

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

BIOLOGY 2803/1

Transport

Tuesday

5 JUNE 2001

Afternoon

1 hour

Candidates answer on the question paper. Additional materials: Electronic calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- You will be awarded marks for the quality of written communication where an answer requires a piece of extended writing.
- You may use an electronic calculator.
- You are advised to show all the stages in calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	14	
2	14	
3	7	
4	15	
5	10	
TOTAL	60	

2

BLANK PAGE

3

Answer all questions.

For Examiner's Use

1 Figs 1.1 and 1.2 show the external and internal features respectively of the mammalian heart.

		Fig. 1.1	Fig. 1.2
(a)	Nar	me structures A to D.	
	A		
	В		
	С		
	D		[4]
	Son	ne people are born with heart defects, while others dev	velop heart defects later.
(b)	Sug	gest the likely effects on the circulatory system of the	following heart defects:
	(i)	a baby born with a hole in the wall between the left a ('hole in the heart');	nd right chambers of the heart
			[2]
	(ii)	valves (V) not working properly.	
			•
			[0]

4

For Examiner's Use

Fig. 1.3

At M and N, valves are either opening or closing.

(م)	With reference to Fig.	1 2	evolain what is	hannening at M	l and N
(U)	will reference to rig.	1.0,	, explain what is	nappening at in	and N.

М			 	 	
		• • • • • • • • • • • • • • • • • • • •	 	 	
	•••••		 •	 •••••	 ••••••
N			 	 •••••	
•••••	•••••		 •	 •••••	
			 	 	 [4]

	5	Exan
(d)	Explain why the maximum pressure in the left atrium is lower than the maximum pressure in the left ventricle.	U
	· · · · · · · · · · · · · · · · · · ·	
	[2]	
	[Total: 14]	
The	cells shown in Fig. 2.1 are adapted for transport in flowering plants.	

Fig. 2.1

(a)	Name the tissue in which these cells are found.
	[1]
(b)	Identify and explain two features of these cells that adapt them to their role in transport.
	feature 1
	role in transport
	feature 2
	role in transport

6

For
Examiner's
Use

In plants, sucrose is transported in sieve tubes.

١.	(In this question, 1 mark is awarded for the quality of written communication.)
•	
•	

[Total : 14]

7

3

For
Examiner'
Use

Multicellular animals have transport	t systems.			
(a) Explain why multicellular anima	als need transport	systems.		
			••••	
				•••••
		•••••		
		••••••	•••••	[3]
(b) Complete the table below by p	lacing a tick (🗸) o	r a cross (x) in the	boxes.	
feature	red blood cell	lymphocyte	phagocyte	
possesses a nucleus				
produces antibodies				
possesses endoplasmic reticulum				
contains haemoglobin				<u></u> [4]

[Total : 7]

8

For Examiner's Use

The rates of transpiration for two different species of flowering plant, $\bf A$ and $\bf B$, were measured over several hours. One of the plants, $\bf B$, is adapted to survive in very dry conditions. Fig. 4.1 shows the transpiration rate measured in $\mu \bf g$ per $\bf cm^2$ of leaf surface for the two different species.

Fig. 4.1

9

For Examiner's Use

(c)	With	n reference to Fig. 4.1, calculate;
	(i)	the difference in rate between species A and B at 10.30;
	(ii)	the increase in rate for species A between 8.00 and 11.00.
		[2]
(d)		te and explain two possible reasons for the change in the rate of transpiration seen oth species between 8.00 and 11.00.
	1.	
	_	
	2.	
		[4]
Spe	cies	B is adapted to living in dry conditions.
(e)	(i)	state the general name given to plants which can live successfully in dry areas;
		[1]
	/!!\	• • • • • • • • • • • • • • • • • • •
	(ii)	state two features that such a plant may possess and explain how each of these may contribute to its success in dry areas.
		1 st feature
		explanation
		2 nd feature
		explanation
		[4]
		[Total : 15]

10

For Examiner's Use

5 Table 5.1 compares the red blood cell count of a group of people when they were living at sea level and after they had spent several weeks at an altitude of 5 000 m.

Table 5.1

altitude/m	number of red blood cells / 10 ¹² dm ⁻³
0	4.90
5 000	6.10

(a)	Calculate the % increase in red blood cells after spending several weeks at high altitude. Show your working.			
	Answer [2]			
A co	ompany advertises a programme to athletes of living and training at altitude to improve r performance.			
(b)	Explain why the performance of an athlete at altitude would be expected to improve a a result of such training.			
	[0]			

Fig. 5.1 shows the effect of different partial pressures of carbon dioxide on the dissociation curve for haemoglobin.

Fig. 5.1

(c)	Witl	n reference to Fig. 5.1;
	(i)	name this effect;
		[1]
	(ii)	calculate the difference in $\%$ oxygen saturation between the two partial pressures of carbon dioxide at a partial pressure of oxygen of 5 kPa;
	(iii)	outline how this effect ensures more efficient delivery of oxygen to the tissues when exercising.
		[3]

BLANK PAGE