Surname					Other	Names			
Centre Number						Cand	idate Number		
Candidate Signature									

For Examiner's Use

SC11

General Certificate of Education June 2009 Advanced Level Examination

AQA

APPLIED SCIENCE Unit 11 Controlling Chemical Processes

Wednesday 10 June 2009 9.00 am to 10.30 am

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show the working of your calculations.

Information

- The maximum mark for this paper is 80.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.

For Examiner's Use					
Question	Mark	Question	Mark		
1		5			
2					
3					
4					
Total (Co	olumn 1)	-			
Total (Co	olumn 2) -	-			
TOTAL					
Examine	r's Initials				

M/Jun09/SC11 SC11

Answer all questions in the spaces provided.

1	hydr	oxide.	alkali industry manufactures three main products – chlorine, hydrogen and sodium These substances are formed by the electrolysis of sodium chloride solution his is a continuous process.
1	(a)	Expl	ain what is meant by a continuous process.
	<i>a</i> .		(2 marks)
1	(b)	Cost	s involved in manufacturing processes can be classified as
			direct costs capital costs indirect costs
		Clas	sify each of the following costs involved in the electrolysis of sodium chloride ion.
1	(b)	(i)	Construction of the electrolysis cell
1	(b)	(ii)	Maintenance of the electrolysis cell
1	(b)	(iii)	Electricity used in the electrolysis cell
1	(b)	(iv)	Salaries of the workforce
1	(c)		type of electrolysis cell uses mercury. An analytical chemist working at a r-alkali plant must monitor the process carefully to ensure minimal leakage of eury.
1	(c)	(i)	Suggest why it is important to minimise the leakage of mercury.
			(1 mark)
1	(c)	(ii)	All three electrolysis products are hazardous. Hydrogen is flammable, for instance.
			Suggest one safety precaution that workers at the plant should take when hydrogen is present.
			(1 mark)

1	(d)		Some of the sodium hydroxide produced by this process can be reacted with chlorine to form NaClO ₃ . This can be used as a weedkiller.			
			6 NaOH + 3 Cl ₂ \longrightarrow 5 NaCl + NaClO ₃ + 3 H ₂ O			
1	(d)	(i)	What is the oxidation number of chlorine in			
			Cl ₂			
			NaClO ₃ ?			
1	(d)	(ii)	Calculate the relative formula masses, $M_{\rm r}$ of NaOH and NaClO ₃ . (Relative atomic masses, $A_{\rm r}$, Na = 23, O = 16, H = 1, Cl = 35.5)			
			$M_{\rm r}$ NaOH			
1	(d)	(iii)	M _r NaClO ₃			
1	(d)	(iv)	(3 marks) Very few reactions have a 100% yield. Suggest why the yield is often much less than 100%.			
			(1 mark)			

2		strial chemists must consider rates of reaction. The rate of a reaction may be too rapid ow a manufacturing process to be carried out safely.
2	(a)	Explain what is meant by rate of reaction.
		(2 marks)
2	(b)	A Maxwell–Boltzmann curve showing the distribution of energies of particles can be used to explain why a decrease in temperature decreases the rate of a reaction. Such a curve is shown below.
		On the Maxwell-Boltzmann distribution
2	(b)	(i) label the axes (2 marks)
2	(b)	(ii) sketch the curve you would expect for the same particles at a lower temperature. (2 marks)
2	(c)	Define the term activation energy.
		(2 marks)

2	(d)	Use the idea of activation energy and the Maxwell–Boltzmann curves to explain why a decrease in temperature decreases the rate of a reaction.
		(3 marks)
2	(e)	What is a catalyst?
		(2 marks)
		Question 2 continues on the next page

2 (f) A typical reaction profile for a reaction is shown.

Reaction pathway

2	(f)	(i)	Explain how you know that this reaction is exothermic.
			(1 mark)

2 (f) (ii) Some catalysts can be used to slow down a reaction. If used in this way, a catalyst is called an inhibitor.

On the reaction profile above, sketch the profile you would expect to see if the reaction was carried out with an inhibitor. (2 marks)

16

3	A chemist is studying the trend in enthalpies of combustion of the family of compounds known as the alcohols.					
3	(a)	Expl	ain what is meant by the term enthalpy of combustion.			
				(2 marks)		
3	(b)		chemist measured the enthalpy of combustion of ethanol (C_2H_5OH). (C_2H_5OH) .	It was		
		nega	ald you expect the enthalpy of combustion of ethanol to have a positive value? ain your answer.	ve or		
				(1 mark)		
3	(c)		chemist wanted to measure the enthalpy of combustion of the alcoholest molecule, propan-1-ol.	,		
3	(c)	(i)	Balance the equation for the complete combustion of propan-1-ol			
			$2C_3H_7OH$ + O_2 \longrightarrow CO_2 + H_2O	(2 marks)		
3	(c)	(ii)	List the apparatus that could be used to carry out this experiment. Propan-1-ol is a liquid at room temperature.			
			Ouestion 3 continues on the next page	(3 marks)		

3	(c)	(iii)	What measurements should be recorded during this experiment?
			(3 marks)
3	(c)	(iv)	Explain how the results from this experiment could be used to calculate the enthalpy of combustion for 1 mole of propan-1-ol.
			(3 marks)
3	(c)	(v)	Suggest three ways in which the chemist could ensure the accuracy of the experimental results.
			1
			2
			3
			(3 marks)

4			manufacturing company uses tetrafluoroethene (C_2F_4) as a starting material produces PTFE, which is used in non-stick coatings.	rial for the
			oethene is obtained from chlorodifluoromethane (CHClF ₂) by the follow avolving a homogeneous equilibrium.	ing
			$2CHClF_2(g) \iff C_2F_4(g) + 2HCl(g)$ $\Delta H = +128 \text{ kJ mod}$	\mathbf{l}^{-1}
4	(a)	Expl	lain the term homogeneous.	
4	(b)		e the condition required for a dynamic equilibrium to be established.	(2 marks)
				(1 mark)
4	(c)	(i)	Write an expression for the equilibrium constant, K_c , for this reaction.	
4	(c)	(ii)	Calculate a value for the equilibrium constant when the equilibrium concentrations are	(2 marks)
4	(c)	(iii)	What are the units of K_c for this reaction?	(2 marks)
			Question 4 continues on the next page	(1 mark)

4	(d)		t effect will increa hatelier's principl				ield of tetr	afluoroeth	ene? Use
		Effec	:t						
		Expl	anation						
		•••••							
									(3 marks)
4	(e)		t effect will increa Le Chatelier's prin				of tetraflu	oroethene	?
		Effec	et						
		Expl	anation						
					•••••			•••••	(3 marks)
4	(f)	(i)	Use the followin when 1 mole of t					nthalpy ch	
			H		F	F			
			$2 \text{ F} - \overset{\mid}{\text{C}} - \text{C1}$	\rightleftharpoons	C = C		+ 2 H -	- C1	
			F		F	F			
					C–F	C=C	С–Н	C-Cl	H-Cl
			Mean bond enth	nalpy/kJ mol	467	612	413	346	432
									(4 marks)

4	(f)	(ii)	Suggest why your answer to part (f)(i) differs from the actual enthalpy change (+128 kJ mol ⁻¹) for this reaction.
			(1 mark)
4	(g)	CHO Whe	chnician in the analytical laboratory of the plastics company placed 1.8 moles of CIF_2 in a completely empty container, sealed it, and then heated it. en equilibrium was reached the technician analysed the mixture and found that moles of $CHCIF_2$ remained.
			$2 \text{ CHClF}_2(g) \iff C_2 F_4(g) + 2 \text{HCl}(g)$
4	(g)	(i)	Calculate the number of moles of C ₂ F ₄ formed.
			(1 mark)
4	(g)	(ii)	Use your answer to part (g)(i) to calculate the volume of C_2F_4 produced at standard temperature and pressure. (One mole of any gas occupies 22.4 dm ³ under these conditions.)
			dm ³
			(1 mark)

Turn over for the next question

5	react	Some reactions are carried out as a continuous process. Others are achieved using ocess.		
		-	cesses are useful when reactions are being researched in laboratories. When these are scaled up for commercial production, continuous processes are usually used.	
5	(a)	(i)	Explain what is meant by the term <i>batch process</i> .	
			(2 marks)	
5	(a)	(ii)	Give one advantage of a continuous process compared to a batch process.	
			(1 mark)	
5	(b)	The chemical engineers at an industrial plant have asked a research chemist to investigate the rate of reaction between bromide ions (Br^-) and bromate(V) ions (BrO_3^-) in acid solution.		
			$5Br^{-} + BrO_{3}^{-} + 6H^{+} \longrightarrow 3Br_{2} + 3H_{2}O$	
		The	chemist decided to measure pH to monitor the reaction.	
		Sugg	gest another experimental method that could be used to monitor the rate of this cion.	
			(1 mark)	
5	(c)	The	rate equation for the reaction is	
			$rate = k [Br^{-}][BrO_3^{-}][H^{+}]^2$	
5	(c)	(i)	What is the order with respect to bromide ions?	
			(1 mark)	
5	(c)	(ii)	What is the overall order of the reaction?	
			(1 mark)	

5	(c)	(iii)	What will be the effect of doubling the concentration of hydrogen ions (H ⁺) on the rate of this reaction? Explain your answer.
			Effect
			Explanation
			(2 marks)
5	(c)	(iv)	Suggest a change in conditions that would increase the value of k .
			(1 mark)
5	(c)	(v)	Concentrations are measured in $mol dm^{-3}$. Determine the units of the rate constant, k , for this reaction.
			(1 mark)

END OF QUESTIONS

