
THE BCS PROFESSIONAL EXAMINATION
Diploma

April 2007

EXAMINERS’ REPORT

Object Oriented Programming

General Observations

This examination was another major improvement on the previous year.

In the last-but-one examiner report we identified that it was our intention that the examination
paper would have the same architecture and the same style of questions, and that centres
should prepare their candidates accordingly. This uniformity in the setting of the paper would
appear to have contributed to the improved performances.

Question 1

Questions 1, 2 and 6 refer to the following Unified Modelling Language (UML) class diagram
(Figure 1). It models a hotel that has a variety of rooms that may be booked by clients.

Figure 1

Using Figure 1:

a) Construct a UML object diagram showing one ConferenceRoom and two BedRooms that
 are part of the same Hotel. Give a short explanation of the diagram. (5 marks)

b) If the two BedRooms and the one ConferenceRoom are a part of the same Hotel, then

explain whether there is a need to distinguish between these differing types of rooms
when the Hotel object engages in message passing with them. (5 marks)

c) Revise the class diagram in Figure 1 to introduce a StudyRoom class, representing a

room that can be booked as part of a conference. Explain the principal revisions that
have been made to the diagram. (5 marks)

d) Revise the class diagram in Figure 1 so that a ConferenceRoom is associated with a

number of StudyRooms when booked by a client when organising a conference.
 (5 marks)

e) Revise the object diagram from part 1(a) showing additionally StudyRooms being

associated with a ConferenceRoom. (5 marks)

Comments

Generally, a much stronger performance than in the previous year.

There is still evidence from the answers given, that the candidates are unable to interpret and
infer the knowledge present in the class diagram. For example, the object diagrams they
presented mixed in class diagram elements such as specialisation!

Candidates need practice of working with class, object, collaboration, sequence and use-case
diagrams. They also need to demonstrate that they can interpret the information presented by
such diagrams.

Some candidates were poor at extending the class diagram as required in parts (c) and (d).
For example, the StudyRoom class required in part (c) was incorrectly given as a
specialisation of the class ConferenceRoom, presumably because the question said they
could be booked along with a ConferenceRoom.

Solution

Question Mark
1 This question examines Part 3 (Design) of the syllabus
(a)

As a consequence of the specialisation hierarchy, both BedRooms and ConferenceRooms are
managed by the rooms (role) set.

5

(b) A distinguishing feature of specialisation used in OO systems is that the Hotel would not have to
distinguish between either type. The methods describe by the class Room can be sent to each
without concern for what actual type they represent. Method overriding in the class hierarchy
might result in differing behaviours, but the Hotel is not concerned with this.

5

(c) The first revision introduces the class StudyRoom as a subclass of Room. Importantly, the
Hotel class then forms a relationship with the Room class so that StudyRoom, BedRoom and
ConferenceRoom objects can be part of the rooms set.

5

(d)

Here, a group of StudyRooms are made associates of a ConferenceRoom.

5

(e)

5

Question 2

a) Define the term class hierarchy. (4 marks)

b) Define the term abstract class. (4 marks)

c) Draw a revision to the UML class diagram in Figure 1 clearly distinguishing those classes

that have been changed into abstract classes. Explain why they have changed.
 (6 marks)

d) Why should object-oriented software be developed in terms of abstract classes?
 (6 marks)

e) Using a programming language of your choice and making any reasonable assumptions,
 give an outline of the implementation of an abstract class from part 2 c). (5 marks)

Comments

Again, a much stronger performance than in the previous year.

Too many candidates answered part (a) by simply describing the relationship between a
superclass and a subclass in a class hierarchy. Most only focussed on code reuse, method
redefinition, polymorphic substitution, etc. That is, few gave concrete illustrations of the
consequences of this arrangement.

Usually part (b) was correctly answered with deferred methods and (sometimes, but not
always) no instantiation. Few candidates identified that an abstract class is used to establish
other classes. Certainly, there seemed to be no clear idea of the purpose of abstract classes.

Solution

Question Mark
2 This question examines Part 2 (Concepts) of the syllabus
(a)

A subclass is a specialisation of a superclass and inherits all the features of its superclass.
This relationship can be repeated any number of times giving rise to a hierarchy of classes.
Class hierarchies support code reuse and support object substitution whereby an object of a
subclass can be used where an object of the superclass is required.

4

(b)

(c)

An abstract class is used to establish other classes. There is no intention of making object
instances of it. It is a way to guarantee that all subclasses share a common set of features.

Since there are no actual examples of Employee or Person then we consider these as
abstract classes.

4

6

(d)

(e)

Since an abstract class has no implementation for some of its methods then different
subclasses can be defined with differing implementation strategies. Code written to that
abstract class is then free to adopt any of the concrete subclasses, even where they differ in
their implementation. Therefore our software is more resilient to change.

public abstract class Employee{
 public abstract int getSalary();
 // …
}

6

5

 Question 3

a) Give an account of the UML use case diagram. Your answer should discuss its overall
 purpose and explain the meaning of its various symbols. (10 marks)

b) An automated teller machine (ATM) is a computerised device that provides a bank's

customers a secure method of performing financial transactions in a public space without
the need for a bank clerk. Draw an outline use case diagram for the software that
supports a bank’s ATM. Having inserted a valid card and password, a user should be
able to:

 i) withdraw money from the ATM
 ii) get a display the current balance
 iii) change the password by entering the new details twice (15 marks)

Comments

This was a popular question that was in general answered well by the candidates.

It was pleasing to note that most students found part (a) quite straightforward and clearly
appreciated the importance of UML use case diagrams in modern software development.
Perhaps part (b) could be improved in future. For example, examiners might preclude the
possibility of examples from part (b) being used to answer part (a).

Solution

Question Mark
3 This question examines Part 3 (Design) of the syllabus

(a)

A use-case is a typical interaction between a user and the system under development. It is used to
capture some functionality to be provided by the software system. For example, in a banking
application a use case may document that a requirement of the system is to support transactions on
bank accounts, e.g. make a deposit. Similarly, in a word-processor application changing the font of
some text might be presented as a use-case.

Developing use-cases is a significant activity in the OOAD process. They can be used to communicate
with clients, as statements of intent for developers and as specifications for the testing that should be
applied to the system when it is under development.

The main symbols used consist of a “stick man” for an actor, an ellipsis for the use case, and a solid
line to associate them. A use case may also include another use case. This is shown by the “includes”
stereotype. Exceptional behaviour can also be shown be the “extends” stereotype, a generalisation
arrow and a condition under which it is taken.

6

4

(b)

A typical answer is expected to be based on :

Many variations are possible. Good students may discuss pre and post conditions as well as paths
through a use case. Minor errors should not be penalised. Award approximately 5 marks per use case.

15

Question 4

a) Give definitions of the following:

 i) abstract data type
 ii) encapsulation
 iii) interface class
 iv) polymorphism
 v) the principle of substitution (15 marks)

b) Choose THREE of the above and discuss how each has contributed to the development
 of object-oriented programming. (10 marks)

Comments

A poorer performance than in the previous year. This was one of two poorly answered
questions.

Part (a) of this question was intended to be relatively straightforward and it proved to be
otherwise. On this occasion it did not turn out this way. For example, part (i) was often
answered by describing abstract methods (word associating, perhaps). Interface class in part
(iii) wandered off into the world of user-interface! Many candidates just did not get the idea of
substitution (part v).

Part (b) was also disappointing with many of the students missing the point of the question.
Most candidates simply repeated their answer from part (a) and failed to explore the
contributions to OO.

Solution 4

Question

 Mark

4 This question examines Part 1 (Foundations) of the syllabus
(a) (i) A set of data values and associated operations that are precisely specified and are

independent of any implementation.

(ii) Encapsulation involves bringing together several elements to create a new entity with
the required behaviour. It is expected that the detailed implementation of the entity will be
hidden. It is closely related to abstraction and information hiding.

(iii) A class representing an abstraction/protocol that concrete classes must implement.
Interfaces support different implementations for the same abstraction. Application code
can then operate to that interface, independent of of the actual implementation used.

(iv) The behaviour obtained from a message received by some object will depend on the
type of the recipient.

(v) An object instance of a subclass can substitute for the object instance of a superclass.

3

3

3

3

3

(b) {Each of the following paragraphs should be awarded 3 marks. Students are expected to
supply three. Award 1 extra mark to the best.}

The ADT leads to the class (a concrete data type) and objects (instances of the type)
represented by the abstractions of the problem domain. Sometimes, as with C++ and Java,
there is closer support for the ADT with language primitives int and double.

Encapsulation also leads to the concept of the class with public operations that are
implemented privately. Typically, the programming language supports encapsulation with
scoping and visibility rules. For example, with Java a class declaration can make use of
the key words public and private for the declaration of methods and fields.

3

3

Programming to an interface reduces the coupling in our code. The interface object can be
any instance of a subclass that conforms to this interface. Subclasses might have quite
different implementations.

Polymorphism increases the adaptability of our code. The same message can be sent to a
number of receiving objects and different behaviours can be observed. A new object type
able to respond to the same message can be readily accommodated by our code.

The substitution principle permits an object of a subclass to be used where an instance of a
superclass is expected. Thus, for example, a method may be defined in terms of superclass
parameter. When the method is called, any instance of any subclass may be used as the
actual parameter.

4

Question 5

a) Explain how an understanding of Design Patterns helps the following people:

 i) students studying computing
 ii) inexperienced software developers
 iii) experienced software developers (15 marks)

b) Describe a Design Pattern with which you are familiar. Your answer should include the

motivation for the existence of the Design Pattern, its structure, participants and
consequences of its use. (10 marks)

Comments

This was a reasonably popular question with about half of the students attempting it. In
general it was answered well.

There were no particular problems with the answers given by students and in general they
seemed to be well prepared. It is good to see that students just assume that the use of design
patterns are just an accepted part of modern software development.

Solution 5

Question Mark
5 This question examines Part 3 (Design) of the syllabus
(a)

(i)

(ii)

(iii)

Design patterns illustrate how certain types of problem should be approached. This
shortens the learning curve and acts as an excellent source of exemplars. Typically the
documentation for a Design Pattern has code samples. Again they should what
can/should be done. Discussions of the forces that are taken into account are also very
useful from an educational point of view.

Exposure to Design Patterns builds on experience already gained. It may even give
confidence that an inexperienced designer was “doing it right” all along. More likely it
will widen the developer’s horizons and make it easier to start or take part in a major
project. In this respect the discussion of the advantages, disadvantages/implications and
related patterns are particularly useful.

 Design Patterns provide a useful vocabulary for experienced developers. It allows them
to communicate at a high level of abstraction without having to worry about unnecessary
detail. They have access to a library of properly documented, tried and trusted Design
Patterns. It is even possible that they may introduce new Design Patterns and pass on
their experience to others.

5

5

5

(b) A typical Design Pattern selected would be Decorator, Iterator, Observer or Singleton.
For example:

Observer
Motivation
There is a need to maintain consistency among co-operating objects. However they must
not be tightly coupled as they become less re-usable.

Structure

2

Participants
Subject – knows its observers and provides an interface for attaching/detaching
observers.
Observer – defines an updating interface for objects that should be notified of changes.
ConcreteSubject – stores state that is of interest and notifies observers of state changes.
ConcreteObserver – references a ConcreteSubject, stores its own state that should be
consistent with the Subject’s and implements the Observer updating interface.

Consequences
Subjects and observers can be varied independently. Therefore subjects can be re-used
with re-using their observers and vice versa. It lets you add observers without modifying
the subject or other observers.

3

2

3

Question 6

Often in the development of object-oriented systems there is a requirement to manage a
collection (or container) of objects.

a) Give two reasons why an array may be unsuitable for this purpose. (4 marks)

b) Give one example of a collection class (excluding the array) with which you are familiar.

Your answer should explain the main benefits it brings. (8 marks)

c) Identify a collection of objects in the UML hotel class diagram in Figure 1. (3 marks)

d) Using a programming language of your choice, give an outline implementation for the

class that maintains the collection identified in 6 c). Your answer should indicate how
objects (or object references) are added to the collection and how each element in the
collection can be accessed for display purposes. (10 marks)

Comments

This was not a popular question but those students that attempted it did much better than last
year. This is gratifying but there is room for considerable improvement.

In general, candidates were aware of the benefits of using a collection rather than an array.
However, it is clear that very few of them have actually deployed a collection in the
implementation of an OO design. Perhaps this is the root of the problem with this particular
question. In any event this question does address an important part of OOP. Hopefully, in
future, candidates will be better prepared.

Solution 6
Question Mark
6 This question examines Part 2 (Concepts) of the syllabus
(a)

Typical responses are:

The array is fixed in size which makes it inflexible if the maximum number of
elements it must hold is not known.

Often there is a need to hold elements in a particular order e.g. sort order. The array is
too rudimentary as elements can only be accessed with a simple index. Therefore any
processing required must be done by the programmer. This is time consuming and
error prone.

2

2

(b) A typical answer using a collection from the Java API is the TreeSet. Some of the
benefits it brings are:

 it’s size is changed automatically when “one too many” elements is added
 it holds elements some determined sort order
 it is generic
 it has methods to access the elements
 it has method to add new elements
 it has methods to help manage the collection
 it hides its inner working from the programmer.

Students are expected to give at least four.

8

(c)

The role name rooms on the zero to many association between the Hotel and the
Room class implies a collection of Room objects (or references).

3

(d)

A typical answer (using Java) is as follows:

import java.util.*;
public class Hotel{

 pubic Hotel() {

 rooms = new ArrayList();
 }

 public void addRoom(Room room) {
 rooms.add(room);
 }

 public displayRooms() {
 iterator iter = rooms.iterator();
 while(iter.hasNext())
 Room rm = (Room) iter.next();
 // display rm perhaps with r.display();
 }
 private Collection rooms;
}

Marks should not be deducted for minor programming errors.

10

	THE BCS PROFESSIONAL EXAMINATION
	Diploma
	April 2007
	EXAMINERS’ REPORT
	Object Oriented Programming
	General Observations
	Solution
	Solution
	Solution
	Solution 4
	Solution 5
	Observer
	Motivation
	Structure
	Participants
	Consequences
	Solution 6

