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SECTION 1:  INTRODUCTION 

1. INTRODUCTION
· FLUID FLOW AND RELATED PHENOMENA (HEAT AND MASS TRANSFER, COMBUSTION, MIXING ETC) OCCUR IN MANY ENGINEERING PROBLEMS
· THREE ALTERNATIVE APPROACHES ARE AVAILABLE:
[image: image1.jpg]
(A) -
EXPENSIVE, TIME-CONSUMING, DIFFICULT TO PROVIDE ALL NECESSARY DETAILS

(B) - 
ONLY POSSIBLE IN VERY RESTRICTIVE CASES WITH (USUALLY) SIMPLE GEOMETRY

(C) -
IMPROVEMENTS IN SPEED AND SIZE OF COMPUTERS AND DEVELOPMENTS IN NUMERICAL METHODS HAVE CREATED AN ATTRACTIVE ALTERNATIVE.  CFD CAN IN PRINCIPLE:

· REDUCE LEAD TIME

· SIMULATE IMPOSSIBLE CONDITIONS

· PROVIDE COMPREHENSIVE INFORMATION

· CFD ALGORITHMS AND CODES HAVE NOW REACHED A LEVEL OF SOPHISTICATION WHERE THEY ARE BEGINNING TO BE USED FOR ROUTINE DESIGN CALCULATIONS

· ENGINEERS NEED TO: 
                                                   -  UNDERSTAND THE BASIS OF CFD

-  APPLY CFD TO MORE PROBLEMS

-  DEVELOP IMPROVED METHODS

1.1 SOME IMPORTANT TERMINOLOGY

· STEADY/UNSTEADY (TRANSIENT)

· 1D/2D/3D 
(NB WILL BE USED HERE TO INDICATE THE 

NUMBER OF SPATIAL CO-ORDINATES ALONG WHICH FLOW PROPERTIES VARY)

· POTENTIAL (IRROTATIONAL)/INVISCID(EULER)/ LAMINAR/TURBULENT

· CONVECTION/DIFFUSION
· INCOMPRESSIBLE/COMPRESSIBLE (SUBSONIC/TRANSONIC/SUPERSONIC/HYPERSONIC)

· FULLY-DEVELOPED/BOUNDARY LAYER/GENERAL
· INERT/REACTING

· SINGLE PHASE/MULTI-PHASE

THE UNDERLINED WORDS INDICATE THE AREAS ON WHICH THE MODULE WILL CONCENTRATE.

1.2  SOME ILLUSTRATIVE EXAMPLES
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ILLUSTRATIVE EXAMPLES
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ILLUSTRATIVE EXAMPLES
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CFD SPRAY MODELLING

SHOWN ARE DISTRIBUTIONS FOR FUEL DROPLETS (TOP) AND FUEL/AIR RATIO (BOTTOM)
1.3   A ROUTE MAP FOR THE DEVELOPMENT OF A CFD CODE
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Suitable numerics are problem dependant

Very large number!
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At last!

SECTION 2 
BASIC GOVERNING EQUATIONS OF FLUID DYNAMICS
2. BASIC GOVERNING EQUATIONS OF FLUID DYNAMICS
2.1 INTRODUCTORY REMARKS
· Equations of fluid motion expressed in general manner (pde’s) are cornerstones of CFD.

· Fundamental equations contain all physics available to us in a particular problem.

· 3 fundamental principles must be applied:

(i) Mass is conserved                - one equation    
(ii) Newton’s 2nd law (F = ma)  - three equations 
(iii) Energy is conserved             - one equation
· These will produce 5 equations; when combined with the equation of state for the fluid, this provides sufficient information to determine 7 variables which fully describe single phase, single component flow:

e: internal energy

p: pressure
(: density

T: temperature

u, v, w: three velocity components in x,y,z coordinate

[NB: p(x,y,z,t)    T(x,y,z,t) etc]

· Most useful form of equations derived by control volume analysis

2.2   MASS CONTINUITY EQUATION
· For arbitrary c.v. (V) fixed in space


· Physical Principle:  Mass is conserved, hence:

Rate of change of mass of CV = mass flux crossing S
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 is unit outward surface normal

· Using Gauss theorem:
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(1)

where ( is a vector derivative, defined as:
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· In Cartesian co-ordinates:
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· For incompressible flows, i.e.  ( = constant:
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· Note that this process may be carried out in “long hand”.

· Take a rectangular c.v. of sides dx, dy, dz
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· Net mass flowrate out of cell through faces perpendicular to x-direction is:
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· Similarly, rate of mass loss through other faces is:
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· Net loss of mass in cell (per unit time)is:
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· Or, dividing by volume:
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2.3   MOMENTUM EQUATIONS: INVISCID FLOW
(THE EULER EQUATIONS)
· Inviscid flow implies no diffusive fluxes

· Newton 2 says: (for a closed system)
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[image: image16.wmf]F

 = forces exerted on system

· For a c.v. fixed in space and time with flow across its boundary surface:
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· Using Gauss theorem, this becomes:
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· Expanding, and using the continuity equation, an alternative form of the l.h.s. of 

Newton 2 is:
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· These expressions may be confirmed by “long hand” derivation:

(consider x-momentum component only)
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· Net rate of flow of x-momentum out of cell is:
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· Possible rate of change of x-momentum due to unsteady effects is:
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· Hence net change in x-momentum content of cell:
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· Contributions to the r.h.s. of Newton 2 (( F) arise due to:

· volume forces (eg gravity)

· surface forces

· For an inviscid fluid, the only surface force is pressure, which acts normal to the surface, thus:
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(where f is volume force per unit mass – eg gravitational acceleration 
[image: image28.wmf]g

(0, 0, -g ) (if z is vertically upwards)

· Using Gauss theorem:
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· Hence, combining LHS = RHS, for arbitrary volume we get the:

Conservative form:
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     or 

Non-Conservative form:
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· These are the Euler equations applicable to inviscid flow. 

· NB   The first form, the conservative form, of writing the equations is usually to be preferred.

· Neglecting gravity and using Cartesian co-ordinates the Euler equations are written:
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· In a more compact form using “operator” notation
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or:
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(3)


where
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which is a form commonly used in CFD publications on the Euler equations.

2.4  MOMENTUM EQUATIONS: VISCOUS FLOW
(THE NAVIER-STOKES EQUATIONS)
· For a viscous fluid, additional normal and tangential stresses appear, as well as pressure.  The net stress may act in any direction.

· A more general method is now needed to describe the stress field – stress is in general a second order tensor (needing 3 pieces of information to describe it) (Vectors are first order tensors and scalars are zero order tensors)

· Denote general stress tensor by (  (the double underline notation indicates a second order tensor)

· Compatibility with inviscid flows is set by making the average of the normal stresses equal to the pressure, the remaining contributions are associated with the viscous fluid nature:


( = -p I + (

where I is the identity tensor 
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· Substituting this in rhs of Newton 2:
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(4)

· Expanding rhs in Cartesian co-ordinates:

(neglecting gravity force)
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· Note the convention for viscous stress notation:- (ij is the stress on the face with outward normal in i direction which acts in j direction. 

· Again a “long hand” derivation should make this form clear.  Considering only the x-y face of the c.v.
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[Note also the sign convention for positive stress]

· Net force in x-direction is:
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· The final step is to relate the viscous stresses to the fluid motion, for Newtonian fluids the stress is assumed to be linearly related to the rate of strain field.  For the general case, it may be shown that:
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where ( is the fluid dynamic viscosity.
· Substitution of these relations into equations (4) leads to the Navier-Stokes equations for Newtonian viscous fluids.

2.5   SCALAR CONSERVATION LAW
· Consider scalar property ( present in arbitrary volume V fixed in space bounded by a closed surface S

· The quantity of ( present in V varies due to

· The effect of fluxes 
[image: image49.wmf]F

on S

· The presence of sources Q in V









· The flux vector  
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  is made up of two components:

(i) a convective contribution  
[image: image51.wmf]F

C  

(ii) a diffusive contribution  
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· General form of conservation law is:

Variation in time of 
 Contribution from

Contribution  from

   quantity ( in V        =      incoming fluxes
   +
       sources
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Where: 
[image: image54.wmf]dS

= outward normal vector of a portion of surface S (also written as 
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NB:
THE PRECISE FORM OF LHS DEPENDS ON DIMENSIONS (UNITS) 

OF ( 
- PER UNIT VOLUME (AS ABOVE)



- PER UNIT MASS 
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· Gauss’ Theorem may be used to re-write surface integral:
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where
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 = differential operator

eg:
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· Hence (for a fixed control volume):
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· Since this is written for arbitrary volume:
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· In general
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               where ( is a diffusive transport coefficient
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(6)

NB:
the dimensions of ( in the above derivation are per unit volume, we 

usually deal with specific quantities (ie per unit mass) and then we have to replace ( by ((.
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(units of ( and Q changed)

2.6  
 THE ENERGY EQUATION

· Physical Principle:
Energy is conserved according to 1st Law of Thermo.
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· In all aerodynamic flows, total fluid energy (per unit mass) is sum of 


internal + kinetic components
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· As before,
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or,
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(7)
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or,


also,
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Assuming zero contributions from other sources (eg volumetric heating due to 


absorption of radiation).

· Using Fourier’s Law of Heat Conduction:
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· Work is done by the fluid due to the volume and surface forces present acting against the velocity, ie:-
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with    
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   (i.e. pressure and shear forces)  this leads to :-
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(9)

· Adding equations 7, 8 and 9:-




[image: image78.wmf](

)

(

)

(

)

(

)

(

)

......

E

vEkTfvpvv

t

r

rrt

¶

+Ñ=ÑÑ+-Ñ+Ñ

¶

uruurururuuruururuururuur



This is the general equation for conservation of total energy, E, in viscous 


compressible flow.

· To illustrate the nature of the last two terms in equation (10), consider a “longhand” derivation of the work terms, concentrating attention just on the forces acting in the x-direction on a rectangular fluid element.
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Size of Elemental Control Volume:         dx dy dz

· Rate of work done on fluid by pressure force is:-
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· Rate of work done by fluid, per unit volume,
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· Rate of work done on fluid by viscous forces is:-
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· Rate of work done by fluid (per unit volume) is:-
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· Considering other faces of control volume, work done terms are, in general, [in equation (10)]:-
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· Note that equation (10) is written for the total energy E; an equation for the mechanical energy per unit mass  
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 may be derived from the momentum equations.  When subtracted from equation (10), an equation for the internal energy per unit mass (e) results, see below.

· For ideal gases the internal energy is related to temperature via-



e = Cv (T –Tref)

· Similarly, specific enthalpy may be written



h = Cp (T – Tref)


and equation (10) may also be converted into an equation for h.

2.7  A SUMMARY OF THE GOVERNING NAVIER-STOKES EQUATIONS
          (Stated in Cartesian co-ordinates for convenience)

The governing equations for unsteady, three-dimensional, compressible and viscous flows are:
Continuity
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(( is the Dissipation function):-
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NB: The Euler equations for inviscid flow can be obtained by simply drop all terms involving friction,( and thermal conduction, k from the above equations.

COMMENTS ON THE GOVERNING EQUATIONS
· The governing equations listed above are a coupled system non-linear partial differential equations which are very difficult to solve analytically.

· The normal and shear stresses terms in these equations are functions of the velocity gradient.

· In aerodynamics, it is generally reasonable to assume the gas is a perfect gas, for which the equation of state is:

P = ( RT
           where R is the gas constant.

-     Another equations to close the entire system are :

( = ( (T)



and

e = Cv (T – Tref)


where Cv  is the specific heat at constant volume.  

PHYSICAL BOUNDARY CONDITIONS
· On a surface assumes zero relative velocity between the surface and the flow immediately at the surface. This is called the no-slip condition.

· There is an analogous “no-slip” condition associated with the temperature at the surface. The fluid layer immediately in contact with the surface is equal to the surface temperature.
· If the surface temperature is changing fue to aerodynamic heat transfer, the Fourier law of heat conduction provides the boundary condition at the surface.
· For no heat transfer to the surface, this wall surface is called the adiabatic wall temperature.
FORMS OF THE GOVERNING EQUATIONS SUITABLE FOR CFD

The short, operator and flux-based form of the equations may be used again here, viz
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(11)

where, U, F, G, H and S are interpreted as column vector given by:
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· Note that these equations are a coupled system of non-linear partial differential equations.  There is in general no analytical closed form solution.

HENCE THE SUBJECT OF CFD!
2.8  GENERALISED CURVILINEAR CO-ORDINATES

· Flowfields in and around complex shapes (intakes, ducts, aircraft, cars etc) involve computational boundaries which do not coincide with simple co-ordinate system lines in physical space

- applying boundary conditions is complex -

· A boundary conforming co-ordinate system is needed.  
· A mapping or  transformation is required from physical to computational space





· The generalised, curvilinear co-ordinates are constructed so that the computational boundaries in physical space correspond to co-ordinate lines in the generalised co-ordinate domain

(Mesh Generation)

· How can the governing equation be expressed in terms of the generalised curvilinear co-ordinates as independent variables?

· Consider the 2D Euler or Navier-Stokes equations in Cartesian form as an example
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 EMBED Equation.3  [image: image104.wmf]
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U
=
Vector of conserved variables


F, G
=
Flux vectors


S
=
Inhomogeneous (source) term

· We seek a curvilinear, body-conforming grid ((, () which has a unique (one-to-one) relationship with the cartesian grid (x, y)

ie
( = ( (x, y),  ( = ( (x, y) 

 
(NB:
For a deforming problem, eg a moving flap, pitching aerofoil, ( and ( would also depend on t)

· The derivatives in (12) may be rewritten using standard rules of calculus:-
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where 
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Applying this to equation (12):-
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· This is not so convenient:-

· conservative form destroyed

· how to calculate 
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 etc?

· Note that:-
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· Which may be written in matrix form:-
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(14)

· If the transformation is unique, then it is also true to write:-



x = x ((, (),  y = y ((, ()

or 
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· In matrix form:-




[image: image112.wmf]xx

x

yyy

x

xh

h

xh

¶¶

éù

êú

DD

¶¶

éùéù

êú

=

êúêú

D¶¶D

êú

ëûëû

êú

¶¶

ëû







       (15)

· Inverting equation (15):-
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(16)


Where the parameter J is the determinant of the transformation Jacobian 


matrix J:-
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· Comparing equations (14) and (16):-
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· Substituting these results into equation (13) and multiplying by J:-
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(17)

· Equation (17) only contains derivatives in the transformed, computational space

· Conservation form may be recovered by noting:-
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And similarly for the terms including G

· So equation (17) may be written:-
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· Hence, by making the substitutions:-

U*
=
J U

F*
=
y( F - x( G

G*
=
x( G - y( F

S*
=
J S


(NB:
Only possible if grid transformation does not change with time)

· Equation (12) may be written as:-
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· Similar but more complicated results are obtained for 3D flows.

· Hence, we may study suitable numerical practices for solving the Cartesian form of the pde’s, since these will also be applicable to the boundary conforming, curvilinear forms of the equations used in general structured mesh CFD.

SECTION 2 – BASIC EQUATIONS

NEED TO KNOW:

· Set of governing pde’s to form closed problems

· Underlying ideas of control volume analysis

· Ability to carry out derivation of conservation equations in simple examples, e.g.




- 2D




- Cartesian co-ordinates




- Mass or scalar conservation

· Essential differences in momentum equations between inviscid/viscous flows

· Meaning and advantages of conservation form of equations

· Nature of terms in energy equations: compressible/incompressible flows

· Advantages of boundary-confirming co-ordinates

Ability to carry out simple transformations of equations in 2D, given Metric/Jacobian Relations, to obtain useful form of equations.

Tutorial Sheet 1:
 Basic Equations of Fluid Dynamics

The purpose of the exercises on this sheet is to acquire a familiarity with the fundamental equations governing fluid flow, and to practice manipulating the equations into simpler forms.

1. Fill out the missing expressions in the “Summary of the governing equations “ presented in section 2.

2. By considering the flux balance for a rectangular control volume of elemental size dx, dy, dz, devise the following conservation equation for a scalar quantity ( from first principles by the “long-hand” route described in the lectures; state any assumptions you make. 
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3. Simplify the continuity and momentum equations (Cartesian form) for steady, constant density, inviscid two-dimensional flow.  Use these equations to show that in such flow the total pressure Pt:
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      is uniform everywhere if the flow is irrotational.  

      (Hint: Examine the condition that the spatial derivatives of Pt are zero for a uniform Pt field)

4. Write down the form of the vertical momentum equation valid for a viscous incompressible,    constant property ((,() flow.  Using a length scale L* and velocity scale U* produce a non-dimensional form of this equation which reveals the importance of the two parameters:

Reynolds number (Re = 
[image: image122.wmf]U*L*

ν

)  and  Froude number (Fr = 
[image: image123.wmf]U*

gL*

)

What are useful physical interpretations of Re and Fr?

5. Show that the conservation equation for mechanical energy given below may be derived from the momentum equations :
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      where:
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6. Burger’s equation is defined as relevant to constant density, inviscid, one-dimensional (spatial) but unsteady flow.  List the simplifications which result from these assumptions and reduce the full version of the momentum equations to this form and write this down.  What are the properties of this equation which make it suitable as a model problem for development of numerical methods?  How could this equation be linearised?

7. Reduce the full form of the scalar conservation equation derived in question 2, above, to the version applicable to steady one-dimensional constant velocity flow in the x-direction with constant fluid properties.

Subject to the boundary conditions:


x = 0
( =1


x = L
( = O

Show that the exact solution is:
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where Pe = 
[image: image127.wmf]UL
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 (Peclet number)

plot this solution for Pe = 0, ( 5, ( 500 and discuss the implications of the shapes of profiles obtained.

8. Write the Navier-Stokes equations for a steady, two-dimensional flow.

9. Express the continuity and x-momentum equations in conservative tensor notation form for incompressible flows.

SECTION 3

MATHEMATICAL PROPERTIES OF THE GOVERNING EQUATIONS
3.
MATHEMATICAL PROPERTIES OF THE GOVERNING EQUATIONS
3.1
 INTRODUCTION

· Some useful guidelines to indicate appropriate numerical methods for the solution of the governing equations of fluid flow can be gained by considering a few basic mathematical properties of the pde’s

· Valid numerical solution techniques for these pde’s should exhibit same general properties

· N B: All equations we must deal with in CFD have the highest order derivatives occurring linearly (possibly multiplied by coefficients which are functions of the dependent variables, but with no products of the highest order derivatives)

· such equations are called quasilinear 

· A well-established classification exists for three types of equation for second-order quasi-linear pde’s - which we will also be able to give a physical, flow-related interpretation.

3.2  CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 

3.2.1  MOTIVATION

· In practical engineering aerodynamics problems, we know that under certain conditions shock waves can occur, ie a zone of discontinuity.  It is important to establish any preferred directions in space along which the shock waves can propagate (preferred directions of transfer of information) since any numerical method will have to treat these preferred directions in a special way, if it is to represent this property of the flow properly.
· We need to find a method for identifying if these special directions of information flow exist,  (and if so in which direction they lie) for the pde’s governing fluid flow.

· Although in general the equations of CFD involve 3 space dimensions, the properties we are interested in can as easily be studied in 2D.

· A general quasi-linear pde of second order in 2D is:
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(18)

· Where a, b, c may be:
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but not of any second derivatives of (.

· Note that in general CFD problems involve systems of such equations, but our classification can proceed using just one as all equations in the system have a similar structure.

· Also, a single 2nd order quasi-linear pde may itself be reduced to an equivalent system of 1st order pde’s. eg:

Let
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then equation (18) may be written:
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· Hence our search for special directions (if they exist) can begin with this system of quasi-linear 1st order pde’s in 2D.  Any properties identified will be shared by the more general 2nd order pde’s of CFD (equation 18).

3.2.2  CLASSIFICATION
· Consider a simple system of pde’s:
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(19)


u, v are dependent variables, functions of independent variables x, y.


a1, b1……f1, a2, b2……f2 coefficients may be functions of u, v, x, y.

· If u, v (solution to equations (19)) display continuous behaviour in x, y space, then

since



u = u(x, y),     v = v(x, y)
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(20)

· Equations (19), (20) are 4 equations in 4 unknowns:




[image: image134.wmf]÷

÷

ø

ö

ç

ç

è

æ

¶

¶

¶

¶

¶

¶

¶

¶

y

v

,

x

v

,

y

u

,

x

u


· In matrix form:
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                    (

matrix [ A ] with determinant | A | 

· If | A | ( 0 then unique solutions exist for (u/(x, etc, everywhere in (x, y) space, subject to the boundary conditions, and no discontinuities exist in the solution.

· However, if | A | = 0 then there are locations in (x, y) space where (u/(x, etc, are indeterminante, ie these are the locations (directions) along which discontinuities if present (eg at some point in the boundary conditions) will propagate.

· To find these locations/directions, solve | A | = 0
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ie



(a1c2 – a2c1) (dy)2 – (a1d2 – a2d1 + b1c2 – b2c1) (dx dy) + (b1d2 – b2d1) (dx)2 = 0


ie
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(21)


where



A = a1c2 – a2c1


B =



C =

· Equation (21) is a quadratic in dy/dx for any point P in (x, y) space (the conditions of which define A, B, C).  This defines (possibly) two directions or lines along which discontinuities will propagate.

· These are called the characteristic directions for any point P for the appropriate P.D.E.

· Solving equation (21)
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· NOTE IF:

 1.   B2 – 4AC > 0, there are two real characteristics through each point in 


(x, y) space.  A pde system, which has this property, is called a hyperbolic pde.
2. B2 – 4AC = 0, there is one real characteristic – this type of pde is called
                             parabolic.
3. B2 – 4AC < 0, there are no real characteristics – an elliptic pde.

· Returning to the general 2nd order quasi linear pde:-
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A similar analysis leads to the same conclusion, ie the nature of this type of pde


also depends on ( = B2 – 4AC
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[ NB:
Terminology comes from geometry, for a general curve in x, y plane



Ax2 + Bxy + C2 + Dx + Ey + F = 0


with 



( = B2 – 4AC              

( > 0  (  Hyperbola








( = 0  (  Parabola








( < 0  (  Ellipse




]

· NB:
If A, B, C, etc, are f(x, y, u, ((/(x, ((/(y) then the nature of the equation 




can be different in different regions of space- mixed type.
3.3    CONSEQUENCES OF PDE CLASSIFICATION
3.3.1  HYPERBOLIC EQUATIONS

· The characteristics represent directions along which information propagates.  They may be used to identify zones of influence and domains of dependence




      
a
       b            
   c

· If our numerical solution proceeds by marching forward in the y direction from known conditions along the x-axis, we must ensure that the numerical scheme only allows points along ab to influence P (not from, eg c)

3.3.2  PARABOLIC EQUATIONS

· Only one characteristic runs through any point P.  The picture is now:


3.3.3  ELLIPTIC EQUATIONS

· No real characteristics – the entire region of (x, y) space represents the region of influence and the domain of dependence of P


· Elliptic pde’s require boundary conditions around a complete closed curve.

3.4

GENERAL COMMENTS

· Both hyperbolic and parabolic pde’s contain propagation directions and therefore encourage marching type integration methods, but with different conditions for the numerical schemes and examples of flows governed by hyperbolic equations
·  Elliptic pde’s are equilibrium type problems

· Unsteady heat conduction problems
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- are examples of flows governed by








  Parabolic equations

Boundary-layer equations (Steady)

· Steady, subsonic inviscid flow



All incompressible steady flows

- are examples of flows governed by 

Steady, Navier-Stokes (viscous) flows        Elliptic equations

SECTION 3 - Mathematical Properties of the Governing pde’s

NEED TO KNOW:

· Classification scheme for pde’s – different mathematical types:




Parabolic




Hyperbolic




Elliptic

· Means of distinguishing equation types by determining, characteristic directions, application to simple examples.
· Meaning of:




Characteristic direction




Domain of dependence




Region of influence

· Implications of type for numerical solution technique – e.g.




Marching Methods?




Preferred direction?




Boundary conditions?




Step sizes?

· Examples of flow types corresponding to each equation type.

Tutorial Sheet 2:  Mathematical Properties of the Governing pde’s
1. Non-linear 1D wave-motion in a flowing fluid is governed by the following equations:
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      where a is the speed of sound. Classify this system of equations as hyperbolic or   

      elliptic and determine the characteristic directions in (x,t) space.  Draw the domain      

      of dependence/region of influence diagram.

2. Show that the equations defining a 2D potential flow
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are of an elliptic nature in (x,y) space.  Is this consistent with the equations 

governing stream function (() and velocity potential (() in 2D potential flow?  Draw the domain of dependence/region of influence diagram.

3. Show that the 1D viscous version of Burgers equation:
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is parabolic in (x,t) space.  Draw the domain of dependence/region of influence diagram.

SECTION 4

 DISCRETISATION METHODS
4.

DISCRETISATION METHODS

4.1   INTRODUCTION
· Analytical solutions to pde’s produce a continuous description of the solution in space and time.  Numerical solutions produce information only at discrete points in the computational domain, called “grid points” (the intersection of a mesh say).  
· The discretisation process is the means by which the continuous equation (pde’s) are converted into algebraic equations (possibly non-linear) linking the solution at these discrete points.  
· Together with the boundary condition information these algebraic equations may be solved to produce the numerical solution.

· Three methods are available (at least) to produce the  discretised statement of the problem:
(1) finite-difference  (FD)
(2) finite-volume      (FV)
(3) finite-element     (FE)
· FD method is the oldest technique.

· Under some circumstances all methods lead to the same algebraic equations.

· FV method is probably (currently) the most popular.

· Finite element methods generate much fuller matrices than FD (or FV) techniques and therefore more expensive of memory than FV method and hence not as popular in the CFD community.
· A brief overview of the FD and FV methods is given below, as these are by far the most popular in CFD.

ROUTE MAP FOR SECTION 4













4.2

THE FINITE-DIFFERENCE METHOD

· Based on replacing individual partial derivatives appearing in the governing equations with algebraic difference expressions derived using Taylor’s series expansions.

· Eg consider a mesh generated in the x-y plane (for convenience a uniform spacing ((x, (y) is chosen, although this is usually not the case in general)







Discrete Structured Grid



       (i: index in the x-direction, j: index in the y-direction)

· Note the index notation, a point-of-the compass notation is also common

eg Ui,j =UP, Ui+1,j = UE etc.

· Different time levels often indicated by superscript, eg 
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· The performance of various differencing schemes applied to the various partial differential equations of interest in CFD can be judged by a variety of criteria.

· Consistency
When (x and (t tend to zero, the discretised equation should tend towards the differential equation which it purports to represent.

 ♦   Stability


Any error between 
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 (the current numerical solution) and 
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 (the exact 


numerical solution) should remain uniformly bounded for n ( ( at fixed (t.


Convergence
The numerical solution 
[image: image148.wmf]n
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 should approach the exact solution ( (x, t) of the

Differential equation at any point when (x and (t tend to zero.

NB it is usually taken that for a consistent numerical scheme, stability is the necessary and sufficient condition for convergence (for linear problems at least).

· Numerical Accuracy
The power of (x and (t with which the truncation error tends to zero as (x and (t tend to zero (see below for definition of truncation error).

For convection dominated problems (characterised by waves that propagate with little or no loss of amplitude) the following properties of differencing schemes are often considered:

Transportive
Waves propagate in the correct direction.

Dissipative
Waves travel with reducing amplitude.

Dispersive
Waves of different wavelengths propagate at different speeds.

· Conservation
Arranging the differencing so that only the fluxes of a conserved quantity at the boundaries of the solution domain determine the amount of the conserved quantity within the domain.

· Boundedness
Differencing schemes such that the value of (P remains within the bounds of its neighbours (or the solution overall).

· Truncation Error

Most common finite difference representations of derivation are based on Taylor series expansions written as:
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· To obtain useable formulae the infinite series must be truncated (NB this necessarily introduces an error)

· Eg
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Truncation Error (i.e. neglected terms)

Hence an approximation to ((U/(x)i,j may be written:
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“Terms Of Leading Order (x”






Truncation Error






[image: image152.wmf]÷

ø

ö

ç

è

æ

+

D

-

D

-

........

U

6

x

U

2

x

'

'

'

j

,

i

2

'

'

j

,

i


· No information in the left of (i,j) is used. This is therefore termed a first-order accurate forward difference approximation for (U/(x

· Similar expressions may be derived and given associated names, eg
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1st Order Backward Difference
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2nd Order Central Difference

[Note: show truncation error is: 
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2nd Order Central Difference


and similarly for 
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· Note that truncation errors associated with finite-difference approximations may be reduced by (1) using higher-order using approximations ( i.e. include more terms), (2) reducing (x.
· Higher-order accurate difference scheme requires more grid points, result in more computer time – a disadvantage.
· On the other hand, a higher-order difference scheme may require a smaller number of total grid points in a flow solution to obtain comparable overall accuracy – advantage.

· Higher order difference scheme may result in a “higher quality” solution such as captured shock waves that are sharper and more distinct.

4.2.1 DIFFERENCE EQUATIONS
· The essence of finite-difference methods for the solution of the pde’s of CFD may be illustrated by considering the parabolic equation for 1-D transient heat conduction:
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     This is the equation governing transient heat conduction in one space dimension, x
with constant thermal diffusivity, (.
· The space discretisation mesh in this problem looks like:


i: is the running index in the x-direction, n: is the running index in the t-direction 
· A first-order forward difference for the LHS is:
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(NB superscript index for time conventional)

· A second-order centred difference for the RHS, x-direction, is :
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but at what time-level should this be evaluated?

· Choose initially time level n, the pde is thus converted to the algebraic difference equation:
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(22)

· The truncation error for this scheme (usually referred to as “FTCS”) is 0((t, (x2).

· Note that as (t, (x both tend to zero the truncation error approaches zero and the solution of the algebraic difference equation approaches the solution of the differential equation – this is a property of a consistent numerical approximation.

4.2.2  EXPLICIT AND IMPLICIT SOLUTION APPROACHES
♦ Once a specific differencing technique is used to solve given flow problem, it falls     into either an Explicit or implicit approach. These two approaches represent a fundamental distinction between various numerical techniques.

4.2.2.1 EXPLICIT APPROACH
· By definition, in an explicit approach, each different equation contains only one unknown (here is
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) and therefore can be solved explicitly for this unknown in a straight forward manner.

· Consider equation (22), for 1-D heat conduction, which may be re-arranged in terms of the “unknown” temperature 
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being parabolic, this equation lends itself to a time marching solution. 
· To solve the problem we need

· information on 
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(Boundary condition)
· information on 
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· This scheme is an example of an






METHOD

4.2.2.2 IMPLICIT APPROACH
· Equation (22) is not the only difference equation that can represent the 1-D heat conduction problem.

· Suppose we had chosen to evaluate the RHS spatial derivative in terms of temperatures at the time level n + 1, viz:
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(23)

· NB:  The truncation error is still 0((t, (x2), ie the accuracy of the approximation 



    is unchanged.
· New time-level temperatures are calculated from:
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· This is an example of an






METHOD


Solution of equation (23) requires a matrix inversion method.

· Note that other schemes are clearly possible, by introducing a weighted (averaged) approximation on the RHS:
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where 0 < f < 1

· For f = ½, the Crank-Nicholson differencing scheme is obtained, i.e. the spatial difference on the RHS is written in terms of average properties between time level n and n+1.
· Crank-Nicholson differencing is commonly used to solve problems generated by parabolic equations. The unknown 
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 is not only expressed in terms of known quantities at time level n, but also in terms of other unknown quantities at time n+1. This equation must be written at all interior grid points, resulting in a system of algebraic equations from which the unknown 
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 for all i can be solved “simultaneously”.
· By definition, an implicit approach is one where the unknown must be obtained by means of a simultaneous solution of the difference equations applied at all the grid points arrayed at a given time level.

· Implicit methods are usually involved with the manipulations of large matrices. 
· Something else changes as we move from explicit to various implicit methods, namely the stability of the numerical approximation; this is the tendency for any perturbations (such as round-off error) present in the solution of the algebraic equations to decay.  If small perturbations do not decay, unstable growth will occur, with catastrophic results.

· For Explicit approach, once ∆x is chosen, then ∆t is not an independent, arbitrary choice; rather, ∆t is restricted to be equal to or less than a certain value prescribed by a “Stability Criterion”.

· If ∆t is too large → unstable solution.

· There are no such stability restrictions in an implicit approach.

· For implicit methods, stability can be maintained over larger ∆t. Hence, Implicit methods require fewer time steps compared to explicit methods.

4.2.3 STABILITY ANALYSIS
♦  If the solution error does not grow, and especially if it decrease from one step to another → Stable solution.

NB:

· Unstable solution : when numerical errors amplifies from one step to another.

· Stable solution : if numerical errors decrease with the time marching

· Discretization error : the difference between the exact analytical solution of pde’s and the converged solution of the difference equation. 

4.3.1 VON – NEWMAN STABILITY ANALYSIS
♦   Let us examine the stability property of the explicit scheme for 1-D heat conduction (equation (22)). The explicit difference representation is;
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and let:

D = exact solution of difference equation
N = numerical solution of on a real computer with finite accuracy.
· i.e.  

if 
( = round-off error





N = D + (
Round-off error is the numerical error introduced after repetitive number of calculations in which the computer is constantly rounding the number to some significant figure.

· Since N is current solution on our real computer; from equation (22):
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· But D is exact solution of (22):
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· Subtracting the above two equations, we have:
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[image: image177.wmf]
· But for stability:
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· The distribution of errors along the x-axis may in general be represented by a Fourier decomposition
· This is then known as the Von-Neuman stability analysis

· Also, we assume an exponential time variation; i.e. at any given time and location the random variation of ε with x&t can be expressed by a Fourier series as:
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where km is the wave number, with amplitude am and m is the number of waves that are fitted inside a given interval.
· Since we are dealing in equation (22) with a linear equation, then we need to examine only the behaviour of a single component, all the others will behave in a similar manner.

· Hence just consider
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      The stability characteristics can be studied using just this form for ε with no loss       in generality to find out how ε varies in steps of time and to find out conditions on ∆t for satisfactory solution.

Substitute in equation (24)
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· Recalling the identity,
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· Hence
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· Also (from trigonometric identity)
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· Hence
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· Thus
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· G is called the amplification factor which must be less than 1 to have a stable solution.
· If  G < 1; we have two possible situations which must hold simultaneously:



(a)
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and 
(b)
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· Condition (a) is always true for:
s > 0

· For condition (b) to be satisfied:
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This is the stability requirement for the solution of the difference equation (22) with the Forward time Central difference (FTCS) scheme.
· i.e. for a given ( and (x, (t must be chosen such that 
[image: image192.wmf]2

1

s

<

, where:
                                              
[image: image193.wmf]÷

ø

ö

ç

è

æ

D

D

a

=

2

x

t

s


· Clearly, for a given (x, the allocated value of (t must be small enough to provide stable solution of the difference equations.

· NB
This can place a stringent requirement on explicit schemes since the 




time-step requirement is constrained by the smallest cell size throughout 




the solution domain, if no special measures are taken.


Hence
-
simple explicit methods are acceptable for the Euler equations, but 





are not economic for the Navier-Stokes equations.

( The above analysis is an example of a general method called the 

    Von Neumann stability method, suitable for linear difference equations.
4.2.3.2 COURANT-FRIEDRICH-LEVY CONDITION
· The exact form of the stability criterion depends on the form of the difference equations.

· As a further example consider the inviscid 1D linearised Burger’s wave equation:
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           (c = constant and positive)


(NB this is a hyperbolic equation)

· Applying the FTCS (Forward time, Central space) approach to this equation gives:
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· Using the von Neumann stability analysis produces the amplification factor
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where
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· Since |G| > 1 for all C then this scheme is called unconditionally unstable 

· Instead, consider a first order backward (ie upwind) approximation for the spatial gradient
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· This produces: (with ( = km(x)
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· Hence for stability C ( 1; 
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This is known as the Courant-Friedrich-Levy (CFL) Condition.

· The condition C ( 1 applies in general to most explicit schemes for hyperbolic equations.  All have some restriction on C.

· The CFL condition may be interpreted as a necessary reflection of the mathematical properties of hyperbolic pde’s.

· For the equation considered, the one real characteristic is the line: c

· So the domain of dependence picture looks like:


· If the numerical domain of dependence (PAC) is to completely contain the physical domain of dependence (PQC) then:
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i.e.  C ( 1; 
4.2.3.3  LINEARISATION OF THE EQUATIONS  

             (FOR NON-LINEAR EQUATIONS)
· So far we have only considered a linear pde – how are finite – difference methods applied to non-linear equations.

e.g. the inviscid  1D Burger’s wave equation
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· Write this in general as:
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where F (U) is a non-linear function

· For explicit methods, the extension is straightforward, eg:
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· For implicit methods, we may write
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(25)

· But how are 
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to be evaluated – we need a linearisation method – or we need to introduce iteration within the time-step.
· Beam and Warming suggested to expand the flux function F by Taylor Series 


(in U)
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i.e. expand F in a series expansion around time level n :
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where the higher order terms are neglected.
· Writing
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(NB This may be evaluated at time-step n once the F (U) expression is known)

· Substitution in equation (25):
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· Which leads to the equation:
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     (26)

· The algebraic equations for the implicit method may be assembled in matrix form.  For equation (26) above (and its linear equivalent equation (23)) this assumes a tri-diagonal form:
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· NB The boundary conditions have been used to evaluate d1 and dN
· This is typical of the algebraic equation problem delivered by implicit methods in finite difference techniques in CFD:

· very sparse matrix

· coefficients are functions of solution

· very efficient methods exist for inverting tri-diagonal (e.g. Thomas’ algorithm)
4.2.3.4 ALTERNATING-DIRECTION-IMPLICIT (ADI) STABILITY     METHOD FOR MULTI-DIMENSIONAL EQUATIONS
· As well as considering extensions to non-linear examples, we must consider the case of multi (space) dimensions – again, explicit methods extend in a straightforward manner (although the stability constraints derived earlier will change, see book by Roache).  We consider here only the problems encountered in implicit methods in multiple space dimensions.

· Consider the unsteady diffusion equation in 2D:
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(27)

· An implicit approximation for equation (27) is:
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(28)


i.e. (with x direction discretised as i, i+1, etc; y direction discretised as j, j+1, etc)
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where   
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i.e. contains five unknowns

· This scheme has a truncation error (0((t, (x2, (y2) and is unconditionally stable

· But, the matrix is now penta-diagonal whose inversion is more computationally expensive

· A way to avoid this expense is to use the idea of splitting the solution algorithm into two half time-steps, but at each half-step diagonal matrix inversion is needed at each half-step.

· Instead of equation (28), we write:
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       (28)

where the first equation yield a solution for T at the first ½ step.
· In the first ½ step



The x-direction is treated implicitly



The y-direction is treated explicitly

In the second ½ step this is reversed

This is known as the Alternating Direction Implicit ( ADI ) method, which is a second order accurate in t, x and y. It is particularly useful for parabolic pde’s.
· This second method is unconditionally stable in 2D, but if extended to 3D (via 3 steps of size (t/3) only conditional stability is obtained

(Sx, Sy, Sz ( 1.5          where          
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· This idea comes in useful when needing to invert matrices in general 2D and 3D steady problems (see later))
4.3

FINITE VOLUME METHODS

· Based on direct numerical discretisation of the integral formulation of the conservation laws, not a term-by-term replacement of the differential equations.

· The advantage of finite volume methods is that they are easier to ensure satisfaction of a conservation principle.  For example, if a governing pde is written in conservation form then the variation of the conserved quantity in any volume should depend on the fluxes at the surfaces of the volume and any internal sources.  This should be true also in the discretised system.  Thus, if we add the algebraic equations for three neighbouring volumes together, we should recover the algebraic equation for conservation on the total summed volume.

4.3.1 DISCRETIZATION OF TRANSIENT DIFFUSION EQUATION
· We illustrate here one way of obtaining finite-volume equations (the control volume integral approach) for a 2D, unsteady scalar conservation problem 


(eg heat conduction).
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(31)



(NB   ( = ( Cp ,  ( = k            if       (  = T (Temperature))

· Consider a Cartesian grid with appropriate finite volumes surrounding the nodes where the dependent variable (() is stored.

· Use “point-of-compass” notation to refer to near-neighbour grid nodes.  Upper case letters indicate nodes, lower case cell volume faces.





       

· The integral form of equation (31) may be recovered by integrating
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       I3


I4
· Evaluate each integral in turn:
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To evaluate this further requires an expression for ((((/(x)e, etc.  This means choosing an interpolating polynomial since values of ( are only known at grid nodes.  Let us assume:

(i) ( varies linearly between nodes along mesh lines

(ii) ( is constant along a cell face at the central face value

(iii) ( varies linearly between nodes if this is dependent on (

i.e.
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where
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· Similarly
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· To allow for a source which might be a function of the dependent variable, it is usual to express this in a linearised way,
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superscript * means per unit volume.
· Substitution gives:
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· Now introduce temporal approximation.  A first order approximation for the lhs and a linear approximation between “new” (superscript “n”) and “old” (superscript “o”) time-levels will lead to:
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where
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and f is a temporal weighting factor:



f = 0    (    Explicit



f = 1    (    Implicit



f = 
[image: image238.wmf]2

1

  (    Crank-Nicolson

· NB  The choice of f is influenced by desirable features of the numerical algorithm such as Reliability, Accuracy, Cost as well as properties of the original pde, eg Boundedness.
ie if S( = 0 then the solution ( at any time is bounded by the maximum and minimum values specified by the initial and boundary conditions:


MIN ((initial , (boundary) ( ( ( MAX ((initial , (boundary)

4.3.1.1    EXPLICIT SCHEME
· For the explicit algorithm (f = 0) under these conditions:
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· If (initial , (boundary are positive, ( must remain positive, and this can only be guaranteed if:
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· For uniform properties (() and a square mesh ((x = (y = () this may be re-written:
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ie a time-step restriction
4.3.1.2  FULLY IMPLICIT SCHEME
· The fully-implicit choice (f =1) carries no such restriction.

· NB This is not an accuracy or stability constraint.

· The fully implicit form (f = 1) can be written:
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where:
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 where the superscripts “n” have been dropped for convenience.

· Note that equation (35) may be written in matrix form for the entire set of N finite volume cells making up the solution domain.
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where
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 is the vector of N unknowns, i.e. u,v,w,e,…etc.
[A] is an N x N coefficient matrix (banded pentadiagonal in 2D) (see later section)
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 is the vector of source terms Su
· We need to examine how to invert such matrices quickly and efficiently.

4.3.2  DISCRETIZATION OF UNSTEADY CONVECTION-DIFFUSION EQUATION
· When convection is present, additional problems arise when choosing appropriate discretisation practices for the convective fluxes.

· For illustration, consider the unsteady 2D convective/diffusive transport equation for a scalar (:
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· The same Cartesian, finite-volume grid is used for illustration purposes.


· The first problem we can foresee is that to evaluate the convective fluxes at cell surfaces we need to know the velocities at the cell faces (Ue, Uw, Vn, Vs).

· If information is stored only at the grid nodes (P, N, S, E, W, etc) then extra interpolation is needed.  This point needs careful attention.  The velocity field is usually unknown, requiring solution of the momentum equations, which contain pressure gradients.  A danger exists if cell face velocities are evaluated by linear interpolation and the pressure gradient in the same finite volume cell is evaluated using central differencing.  This can lead to a phenomenon called pressure-velocity de-coupling.  This is beyond the remit of this module (see CFD-2).

· For present purposes we assume that a suitable practice is available and Ue, etc, are known at the cell faces.

· We may proceed as usual to integrate the equation over the surrounding finite volume for each internal mesh point.

· The equation may be written:
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or
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where
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Fe is the total (convective + diffusive) flux at the east face of the finite –volume.

· Following previous practice, the same spatial interpolating polynomial is used for the diffusion term (ie linear profile, central-differencing).




[image: image252.wmf](

)

EP

P

E

e

P

E

e

x

x

2

1

D

j

-

j

=

¶

j

¶

j

+

j

=

j


· But it is dangerous to use this for the convection terms (eg for (e) because this implies a linear (ie equally weighted) interpolation between the surrounding mesh modes (eg (e = ((E + (P) / 2) which does not correspond to the transportive property of the convection terms.

4.3.2.1  THE HYBRID DIFFERENCING SCHEME
· One (albeit crude) interpolating practice is to use a first-order upwind method, viz.



(e = (P 
when 

Ue > 0  , i.e. positive


     = (E 
when 

Ue < 0  , i.e. negative
· The above two practices may be combined by writing:
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where



(e = 1
   selects linear interpolation



(e = 0   selects (first-order) upwind interpolation




(e = 1,     Ue > 0




(e = 0,     Ue < 0

· Combining these two interpolation practices is often called HYBRID differencing, when the decision as to which value of ( to choose is made based on the local (and current) value of the cell Reynolds number 
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· NB  Although first-order upwind differencing obeys the transportive property, it possesses a leading truncation error which is:
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This is dangerous because it is the same form as the physical diffusion terms and therefore represents a numerical diffusion or numerical smoothing error, particularly bad on coarse grids.

· This problem has lead to the derivation of higher-order upwind methods, such as the QUICK scheme discussed below.
4.3.2.2  THE “QUICK” DIFFERENCING SCHEME
· An example of higher order differencing is the QUICK Differencing (Quadratic Upwind Interpolation for Convective Kinematics) scheme.



The QUICK scheme approximates the first derivative as follows: 
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The values at the cell faces (w and (e are determined by fitting a quadratic through the points either side of e or w plus one upwind point.

For example, if U is constant and positive the value of (e is evaluated by fitting a quadratic through the values (W, (P and (E.

· = ax2 + bx + c


For a uniform grid spacing of (x with x = 0 at W


(W = c


(P = a(x2 + b(x + c   (note xP = (x)

(E = 4a(x2 + 2b(x + c (note xE = 2(x)
which gives the quadratic coefficients as:
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At  xe   we have  x = 1.5(x   giving:
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ie
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Similarly for (W (U still positive) we have:
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giving:
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· Returning to the flux approximation (equations 38&39) using HYBRID differencing, this may be written:
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with
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and similar expressions for FW (cW, dW) etc.

· Substitution into equation (37) leads to:
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where
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· The final step is to introduce the temporal approximation, similar choices are available as before, e.g. for the fully implicit scheme, equation (40) becomes:
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with
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· Equation (41) may be further simplified with the aid of the relation:
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i.e. the continuity equation expressed in finite-volume form.

· If equation (42)
 times (n is added to equation (41) the result is of the same form but now:
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· Re-arranging, gives now:
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where
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· Note that once again we are left with the problem of solving a set of algebraic equations:
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· We need to examine efficient methods for solving such equations, which is the subject of the next section.
Section 3: DISCETIZATION METHODS
NEED TO KNOW:

· Differences and similarities between Finite-difference and Finite volume methods.

· Use of Taylor  series expansions to derive FD approximation and associated truncation errors.

· Forward, Central and Backward differencing in time/space.
· Meaning of:

· Consistency/Stability/Boundeness/Transportivity

· Order of accuracy

· Implicit/Explicit methods, advantages/disadvantages

· Central differencing

· Upwind differencing (1st&2nd  order)

· Reasons for preference for different terms

· CFL condition

· ADI schemes

· Numerical diffusion

· Numerical dispersion

· Courant number

· Cell Peclet (Reynolds) number.

· Ability to apply Von-Neuman’s` stability analysis to simple scalar equations to deduce amplification matrix and associated stability restrictions.

· Basic idea behind FV methods and advantages.

· Ability to illustrate FV derivation of algebraic equations for simple scalar component transport equations.

Tutorial Sheet 3:  Discretization Methods
1. Use Taylor series expansion to derive the following finite-difference expression for the third partial derivative of a variable ( with respect to x, and show that the truncation error is 0((x2).
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2. Use Taylor series expansion on a non-uniform mesh to derive the first-order-accurate backward and forward difference expressions for 
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Show that the arithmetic average of these expressions is not second-order-accurate (Note: second order accuracy is achieved on a uniform mesh by this technique – check this for yourself).  How could a second-order-accurate expression for 
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be derived?  What does this analysis imply should be a guiding rule for use of non-uniform meshes in CFD calculations using first-order-accurate approximations?

3. Compare the advantages and disadvantages of explicit and implicit CFD schemes.
4. Apply von Neuman stability analysis to the 1D transport equation:
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(u, ( positive and constant)

      discretised via the FTCS approximation; show that the amplification factor G is given by:
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      where s = ((t/(x2,   C = u(t/(x, and deduce the stability conditions for the scheme.

5. Show that applying the finite-volume method to Laplace’s equation:
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      for numerical solution on a uniform rectangular Cartesian mesh will lead to the    

      same algebraic equation at each mesh node as a centred finite difference method,  

      viz:




[image: image282.wmf]i1,ji,ji1,ji,j1i,ji,j1

22

22

0

xy

-+-+

j-j+jj-j+j

+=

DD


6. Deduce, using finite-volume methods, the algebraic equation corresponding to the following steady-state, first-order pde:
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      Assume the two velocity components are everywhere uniform U=Uo and V = Vo  

      (both positive) and use the following interpolating practices for the cell face values of (:

i) linear profile between mesh nodes 

eg
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ii) first-order upwind interpolation

eg
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iii) second-order upwind interpolation (ie 
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 and use upwind approximation for 
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leading to:
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iv) quadratic upwind interpolation (QUICK)


eg
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(Derive the last two interpolation formulae for yourselves)

In each case express the algebraic equations in the form:
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Under what condition is the coefficient matrix diagonally dominant for each of the approximations (i) – (iv)?

7. By applying a centred difference approximation to the pde:
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      show that the first-order upwind formula applied to the convection terms of Question 2. implies 

      the introduction of numerical diffusion via (nx and (ny, and evaluate expressions for the 

      numerical diffusion coefficients (nx, (ny. 

SECTION 5:  ALGEBRAIC EQUATION SOLVERS
5.  ALGEBRAIC EQUATION SOLVERS
5.1   THE MATRIX INVERSION PROBLEM
· All methods of discretising pde’s described above lead to large systems of algebraic equations.  These usually have the form:
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u is the vector of unknowns (at all the mesh nodes); A is a matrix of coefficients arising from the discretisation.  In general these coefficients may depend on the solution u itself, making the system of equations non-linear.  B is a known vector arising from source/sink term discretisation, and also boundary condition information.

· A is typically a sparse matrix, with many zero elements; the non-zero entries are usually close to the diagonal of the matrix, and often form a banded structure – this influences the optimum inversion method.

· An iterative scheme (an outer-loop) is the easiest and cheapest way to handle the non-linearity; thus, the linearised version of equation (47) may be written:
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Where M is an iteration counter.

· We may therefore concentrate attention on methods for solving the linearised system, say:
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· Two families of methods are available: (1) Direct (2) Iterative.
5.1.1
Direct Method
· Invert A by factorising it into upper and lower triangular matrices



A = L U (Gaussian Elimination)


Then solve equation (49) by forming: 
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Then solve by back-substitution.

· The problem with direct methods is that in order to form L and U, all coefficients in A must be used.  Hence, sufficient storage must be provided in computer memory to store the whole matrix A.

Even in a 2D problem with, say, a mesh of 100 x 100 nodes, A is a 104 x 104 matrix!

 – Certainly inefficient for 3D problems.


· To avoid accumulation of round off errors, it is necessary that:
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,      i.e. the matrix is diagonally dominant.


Often called Thomas Algorithm.

5.1.2  Iterative Methods
· Iterative methods for the linearised equations (an inner-loop) are based on a succession of approximate solutions to equation (49) whereby the approximate solutions are governed by an equation whose matrix is easy to invert.

· Each approximate solution should involve a small operation count, we may also need to examine ways of accelerating convergence (reducing the number of inner iterations).

· The easiest illustration is to use equation (50) to solve for just one unknown (the central point), viz:



 
[image: image297.wmf][

]

2

j

,

i

n

1

j

,

i

n

j

,

1

i

n

j

,

1

i

n

1

j

,

i

1

n

j

,

i

f

4

1

u

u

u

u

4

1

u

D

-

+

+

+

=

+

+

-

-

+


· This equation is applied sequentially at each mesh node, point-by-point, starting from some initial guess.  This is called the Point Jacobi Method.









- Known from iteration n










· Unknown at iteration n + 1



· This may be expressed in matrix form as follows: decompose matrix 
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 into the sum of 3 matrices, a main diagonal, a lower and an upper triangular part:
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· The Point Jacobi Method is:
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[NB.  Convergence again requires diagonal dominance]

· To decide on whether the iteration process has converged, we examine the residual R 
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· The residual is usually evaluated at every grid point.  Two values are usually extracted to determine convergence:

· an “average” value (eg rms value weighted by cell volume),

· the maximum value (and its location).

· The above quantities are dimensional, it is wise to normalise them eg by dividing by the maximum value of the dependent variable within the solution domain.  This will give values around 1.0 during the first few iterations and approaching round-off error (eg 10-7 for single precision) when fully converged.

· An improvement on the Point Jacobi Method may be obtained by noting that if mesh nodes are visited in increasing row  then column order, points (I, j-1

and I-1, j) have already been updated to iteration n+1 when we begin calculating
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So, why not make use of this new information as soon as it becomes available?


This is the Point Gauss-Seidel Method.


· Known from iteration n

· Unknown at iteration n + 1

· Known at iteration n + 1

· The Point Gauss-Seidel Method is defined by the iterative scheme:
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or
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· Gauss-Seidel is typically twice as fast as Jacobi to reach an acceptable level of residu
5.2       CONVERGENCE ACCELERATION METHODS

· The convergence rate of an iterative method for solving the linearised system of algebraic equations (equation (49)) may be increased by enhancing the change brought about at any grid node over one iteration.

· Eg over-relaxation methods write:
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where ( is the over-relaxation coefficient and 
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 is the value obtained from any basic iterative scheme we have decided to use, ie:
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· This idea may be illustrated when applied to the Gauss-Seidel iterative method as follows:

(It is usually then called the SOR – (Successive Over Relaxation) – method)
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· For linear equations like those above it may be shown that this process only works for O < ( < 2.

· NB:   For non-linear systems, in fact we usually (always) need to slow down the rate at which changes in the solution feed back through the coefficient matrix dependence.

· Eg imagine the algebraic equations for an implicit method written as:
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where 
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 is the column vector of unknowns and the coefficient matrix has been split into two parts, Ap containing the leading diagonal entries and AOD containing off-diagonal entries.

· If the entries in the A matrices depend on the solution u, even after linearising as described above, the rate of change of u in each iteration needs to be slowed down to prevent instability, this is done by writing: 




[image: image311.wmf] 




[image: image312.wmf][

]

(

)

[

]

(

)

{

}

(

)

[

]

(

)

(

)

[

]

(

)

n

p

1

n

p

1

n

OD

1

n

p

u

A

1

S

u

A

1

u

A

u

A

w

-

+

w

=

w

-

+

+

w

+

+

+



ie the off-diagonal terms are reduced, producing diagonal dominance.


( is an under relaxation factor, typical values are 0.1 – 0.7.

· A further increase in convergence rate may be obtained by increasing the amount of new iteration information used during the current iteration even further, at the expense of increasing the workload per iteration by solving small systems of equations.

· Eg  suppose we wanted to bring in the (n + 1) iteration information at one more point (say the point to the North).  In our example problem, this can be achieved by solving along vertical lines.











- Known from iteration n










- Unknown from iteration n + 1










- Known from iteration n + 1


· The algebraic equation now looks like:


or
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ie: A tri-diagonal matrix which may be efficiently solved using the Thomas algorithm.

· This is called the Line-Gauss-Seidel Method, or SLOR – (Successive Line Over Relaxation).  When ( ( 1 is used.

· Solution is carried out by solving along all vertical lines in the mesh, and sweeping the line solver from eg left to right horizontally through the mesh.

· It is a common practice to alternate the solve and sweep directions.

5.3

THE MULTI-GRID METHOD

· Finally, the idea of a multi-grid method has been used to achieve the best convergence acceleration for iterative techniques.

· The idea is based on the observation that all standard relaxation (iterative) methods remove high frequency (short wavelength) components in the error present iin the solution of a linear system rapidly, but the low frequency (long wavelength) components only very slowly.

[NB:  For a mesh of size (x covering a distance L with M cells (M+1 nodes), 

ie (x = 
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 frequency components of error].

· The progress through the iterations towards the correct solution, eliminating the error typically looks like
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[image: image318.png]
· Slow convergence is associated with low frequency errors.

· But a low frequency error on a given grid becomes a high frequency error on a coarser grid.

· Thus the basis of the multi-grid method is to use a series of grids to produce optimum removal rates of the errors.

· Produce a sequence of grids m = 1…….m, where grid size ratio is, eg:
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(ie start with the finest grid m on which solution is desired and remove every other grid node to obtain next coarse grid level …etc)

· Perform a few iterations on the finest grid, not enough to remove all error, but enough to damp out high frequency components.

· Transfer current solution on next coarse grid level – restriction step.

· Perform a few iterations on this grid level until the high frequencies on this grid are removed.

· Restrict solution to next coarse grid level and solve.

· Pass solution back up grid level – prolongation step and repeat solution.

· This constitutes one cycle of multi-grid (V-cycle).

· Repeat cycles.

· Other forms possible, details of restriction, prolongation operators crucial.

Section 4: Algebraic Equation Solvers
NEED TO KNOW :
· Implications of structure of typical CFD algebraic equations for matrix inversion methods

· Problems and solutions for non-linearity

· Meaning of:

· Direct/Indirect (Iterative) Methods & implications

· Gaussian elimination

· Tri-Diagonal Matrix Algorithm (TDMA)

· Diagonal dominance

· Point/Line methods

· Jacobi/Gauss-Seidel

· Over/under-relaxation

· Residuals
· The Multi-Grid idea

Tutorial Sheet 4:   Algebraic Equation Solvers

1. Describe the point Jacobi, Gauss-Seidel and SOR methods for solving linear algebraic equations.
2. Consider the stationary diffusion equation
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 Evaluate the exact solution.

      (i)   Derive the governing algebraic equations using second-order central differencing with 

             (x = 0.25.  Write down the coefficient matrix A and its decomposition into D, E, F, as in   

             the lecture notes.

      (ii)   Solve the equations for three iterations using the Jacobi method; examine the residual.

      (iii)  Solve the equations for the three iterations using the Gauss-Seidel method; examine the  

              residual.
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