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Describe a sequence of geometrical transformations that mapped the curve 
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The diagram above shows the curve 
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.There is a maximum point at A(0, 3), a minimum point at B(2,0) and the curve also cuts the x-axis at the point C((2, 0).  Sketch on separate diagrams, showing the corresponding points, if possible, the graphs of
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(iii)
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Write down the first three terms in ascending powers of x of the expansion of 
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It is given that 
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(i)
Prove that 
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(ii)
Find Maclaurin’s series for y in ascending powers of x, up to and including the term in
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(iii)
Deduce the first three terms of the Maclaurin’s series for 
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    for n = 1, 2, 3, ….


(i)
Evaluate the numerical values of 
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(ii)
Prove that 
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(iii)
Find the sum of the n terms of 
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Three functions f, g  and h are defined as follows :
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(i)
State the largest value of a for which the inverse function 
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(ii)
Sketch on the same the diagram, the graphs of 
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(iii)
Find the domain of h’ where h’ is a one-one restricted function of h such that the composite function gh’ exists and gives a maximal range. Define this composite function gh’.
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(a)
Find 
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(b)
(i)     Use the substitution 
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(ii)    Hence, find 
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The curve C has equation 
[image: image47.wmf]3

2

1

2

+

+

+

=

x

kx

x

y

 where k is a positive constant.



(i)
Obtain the equations of the asymptotes of C.
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(ii)  
Find the value of k for which the x-axis is a tangent to C.
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(iii)  
Sketch C for the case k = 3. Hence, using graphical method, find the range of values of x that satisfy the inequalities 
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Referred to the origin O, the position vectors of A, B and C are a = 12i + 8j + k, 

b = 3i + 2j – 5k and c = –3i – 2j + pk respectively.
(i)
Find the value of p if A, B and C are collinear.
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(ii)
If  p is a variable, the locus of C will be a straight line. Find the vector equation of this straight line, 
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(iii)
Given another line 
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(iv) 
Find the shortest distance from A to the line 
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Sketch the curve 
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R is the region enclosed by the curve 
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Calculate the area R.
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(ii)
Find the exact value of the volume generated when R is rotated 2
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 radians about the x-axis.
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The positive number 
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Given  that 
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(ii)
Show that 
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(iii)
Show that 
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(a)
Show that the differential equation 
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(b)
A population of insects is allowed to grow in an experimental environment. The rate of birth of the insects is proportional to the number (in thousands) of insects, x, at time t days after the start of the experiment. The insects died at a constant rate of 0.3 per day. Given that initially x = 5 and it is decreasing at a rate of 0.1.
Show that the differential equation relating x and t is 
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Hence, solve the differential equation, expressing x in terms of t.

[4]
With the help of a graph, explain why it is possible for the insects to be extinct in the experimental environment after some time. Find the duration for this to happen, giving your answer to 1 decimal place.
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13      (a)    Given that 
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(b)
Use de Moivre’s Theorem to show that the equation 
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Hence or otherwise, show that 
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Write down the values of k that gives all the roots of the equations.
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~ End of Paper ~
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