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1. Solve the simultaneous equations

z + (i – 1)w = 0,

3z + (1 – i)w = 1.





[4]

2. Expand 
[image: image31.png]ﬁ millennia
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 in ascending powers of x up to and including the term in x4. 
Deduce the term in xn.
Hence by putting an appropriate value for x in your expansion, find the value of 
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3. The point A has coordinates (0,7,0) and the line L has equation r = (
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 where 

( ( (. Find the coordinates of the point B on L such that AB is perpendicular to L.












[5]

4. The complex numbers v and w are given by v = 2 – i and w = -1 + 3i. 
Write down, in polar form, an expression for 
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. 
Hence find the value of Im
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[5]
5. Use mathematical induction to prove that for any positive integer n, 
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. 
Hence find an expression, in terms of n, for the sum of the series 
23 + 43 + 63 + 83 + … + nth term. 
Hence find the sum of the series 13 + 33 + 53 +…+ 293.



[8]

6. (a)
(i)
Find the numerical value of the derivative of lg x3 when x = 10. 
[1]

(ii)
Hence find the equation of the normal to the graph of y = lg x3 at the 

point where x = 10, giving your answer in the form y = mx + c.
[3]

(b)
Show that 
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 = 1. Hence find the exact value of 
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7. (a) 
(i)
State the value of ei(.






[1]
(ii)
Given that z = ei(, solve for z if 2 – ei(( + () = i(z + 1).


[2]

(b)
Sketch, on a single clearly labelled Argand diagram, the loci defined by the

equations

(i) |z + 1| = 1,

(ii) arg (z + 2) = 
[image: image10.wmf]3

p

.

Find the complex number w represented by the point of intersection of the 

two loci.









[5]

8. (a)
A sequence {xn} of positive numbers is defined as xn+1 = 
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The sequence {xn} converges to a number ( as n tends to infinity. 
Find the value of (.








[3]

(b) Given that f(r) =  
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 where r is a positive integer, express f(r) – f(r + 1) as
a single fraction.









Hence show that 
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[6]

9. (a)
The curve y = f(x) has gradient e2x at the point (x,y). Find f(x) given that 

y = 0 when x = ln 3.








[3]
(b)
Show that the differential equation xy
[image: image15.wmf]dx
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 = x2 + 2y2 may be reduced by 

means of the substitution y = vx to x
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Hence obtain the general solution of y in the form y2 = F(x).


[6]
10. (a)
Express f(x) in partial fractions where f(x) = 
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Given that, when x = 0.25, x increases at a constant rate of 1.5 unit/s, 
find the rate of change of f(x) at this instant.




[6]

(b)





The diagram above shows a pentagon ABCDE of fixed perimeter P cm. 



Its shape is such that ABE is an equilateral triangle and BCDE is a rectangle.



If the length of AB is x cm, 
(i) show that the area of ABCDE denoted by S is 
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(ii) find the value of 
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 for which S is a maximum, leaving your answer 
in surd form.








[6]

11. Two planes (1 and (2 have equations r. 
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 = 9 and r. 
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 = 8 respectively. 
The point P has coordinates (1,-1,3).
(i)
Show that P lies on 
plane (1 .






[2]
(ii)
Find the shortest distance from P to plane (2.




[3]
(iii)
Find the acute angle between (1 and (2.





[3]
(iv) Find, in scalar product form, an equation of the plane (3 which passes 
through P and is perpendicular to (1 and (2.




[4]

12. Sketch, on a clearly labelled diagram, the graph of the curve y = 1 + 
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[2]
(i)
Shade on the diagram, a region A whose area is given by 
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and show that the area of A is 
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[3]

(ii)
By means of the substitution 2x = tan(, show that 
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[6]

(iii) The region R is bounded by the curve, the lines x = 0, x = 
[image: image30.wmf]2
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 and the x-axis. 
Find the exact value of the volume of the solid formed when R is rotated 
completely about the x-axis.






[4]

~ End of Paper ~
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