104 ELECTROTECHNIQUES

This paper consists of ten questions. Answer any six (6) questions. All questions carry equal marks.

Time allowed: 3 hours

Electric space constant	€0	$= 8.854 \times 10^{-12} \mathrm{Fm}^{-1}$
Magnetic space constant	μ_{o}	$=4\pi \times 10^{-7} \mathrm{Hm}^{-1}$
Gravitational constant	\mathbf{G}	$= 6.672 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$
Gravitational acceleration	g	$= 9.81 \text{ ms}^{-2}$
Electron rest mass	m_c	$=9.11\times10^{-31} \text{ kg}$
Electron charge	e	$= 1.602 \times 10^{-19} \mathrm{C}$
U		

- **Q1**. State Coulomb's Law (i)
 - A thin charged rod of length L is placed on the x-axis, with one end at the (ii) origin. The charge per unit length, λ , is constant. Determine the force on a positive point charge q_0 , located at a position x = a, where
 - 0 > a > La)
- b) a > L and
- c) $a \gg L$
- Calculate the force on a point charge of $5 \mu C$, where L = 12 cm, a = 8 cm, (iii) and $\lambda = 5 \mu C/cm$.
- Q2. (i) Describe the behaviour of capacitors connected in series and parallel.
 - A 1 μF capacitor and a 2 μF are connected in series across a 1200 V supply (ii) line.
 - Find the charge on each capacitor. a)
 - b) Find the voltage across each capacitor.

The charged capacitors are now disconnected from the supply line and each other, and re-connected to each other so that the terminals of like charges are together.

- Find the final charge on each capacitor. c)
- d) Find the change in electric energy of the system.
- Q3. (i) State the condition for two elements to be connected in
 - series; a)
- **b**) parallel:
- in an electronic circuit.

(ii) Twelve identical 1 Ω resistors are connected into a circuit as shown in Fig.
Q3.

Figure Q3

Calculate the equivalent resistance of this circuit, when measured between points A and B. Write all assumptions you make.

- (iii) What will be the current through the resistor R_x when a source of 36 V is connected across AB?
- Q4. (i) Describe briefly the two Kirchhoff's Laws of electric circuits.

- (ii) Calculate the value of E_B in the circuit of Figure Q4, given that $R_1 = 12 \text{ k}\Omega$; $R_2 = 6 \text{ k}\Omega$; $R_3 = 2 \text{ k}\Omega$; $R_4 = R_5 = 10 \text{ k}\Omega$ and $E_A = 12 \text{ V}$, no current flow between points A and B.
- Q5. (i) Describe Ampère's Law.
 - (ii) A coaxial cable consists of an inner solid conductor of radius a, and an outer concentric (pipe like) conductor of inner radius b_i and outer radius b_o. The inner conductor carries a current I in the opposite direction to the current flow of the outer conductor, which also carries the same I amount of current. Assume that the current density within a conductor is uniform. Calculate the magnetic field for the regions
 - a) r < a; b) $a < r < b_i$; c) $b_i < r < b_o$; and d) $b_o < r$

- For I = 10 A, a = 10 mm, $b_i = 16 \text{ mm}$ and $b_o = 20 \text{ mm}$, calculate magn (iii) field density at **b**)
 - a) r = 5 mm
- and
- r = 18mm
- Student Bounty.com An electron is projected into a uniform electric field of 5000 N/C, directed Q6. vertically upward. The initial velocity of the electron is 10⁷ m/s, at an angle of 30° above the horizontal.
 - Find the maximum distance the electron rises vertically above the a) initial elevation.
 - After what horizontal distance dose the electron return to the b) original elevation?
- **Q7**. Describe briefly the behaviour of (i)
 - a capacitor a)
 - b) an inductor

in a sinusoidal circuit.

In the above circuit rms value of V is 10 V. Given $R = 300 \Omega$, L = 400mH, $C = 2.5 \mu F$ and $\omega = 1000 \text{ rad/s}$;

- a) Calculate the currents through all components.
- b) Draw the phasor diagram to show all currents and voltages of the circuit.
- Q8. (i) Describe the characteristic of a resonant circuit.

Figure Q8

The circuit in figure Q8 is tuned to resonance, and five AC voltmeters V_A - V_E a connected to it as shown. Give the reading of each voltmeter, if R=300 Ω , L=400 mH, C=3 μ F, v(t)=12 sin $\omega_0 t$ V, where ω_0 is the angular velocity at resonance.

- Q9. (i) Real ammeters and voltmeters may present problems when measuring very large, or very small loads. Show, and describe briefly how best to connect an ammeter and a voltmeter to accurately measure
 - a) Voltage across a very large load
 - b) Current through a very small load.

In Figure Q9 the internal wiring of a 3-scale moving-coil voltmeter is shown with scales of +3 V, +15 V and + 150 V. The resistance of the moving coil $R_G = 15 \Omega$, and a current of 1 mA causes it to deflect full-scale. Find the values of R_1 , R_2 , and R_3 .

- Q10. (i) Devise a 2-input NAND gate, using only the minimum number of 2-input NOR gates.
 - (ii) The Boolean function F is defined as $F = \overrightarrow{ABCD} + \overrightarrow{ABCD}$
 - a) Construct the truth table for function F.
 - b) Simplify function F using Boolean Algebra.
 - c) Find a simple equivalent expression for (original) function F using a suitable Karnaugh-map.