THE INSTITUTION OF ENGINEERS, SRI LANKA IESL ENGINEERING COURSE

PART I EXAMINATION - MARCH / APRIL 2006

106 APPLIED MECHANICS

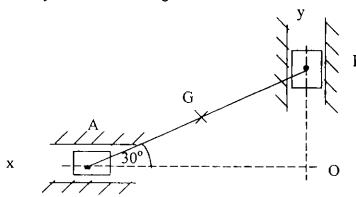
TIME ALLOWED: THREE HOURS

DATE: 10TH APRIL 2006

Fig. Q1

SHIIDENIBOUNTS.COM

This question paper has two sections, SECTION A and SECTION B. Answer six (06) questions selecting a maximum of three (03) questions from each of the two parts. All questions carry equal marks.


Also, <u>write</u> the question No. appropriately in the cage appearing on the cover page.

Wherever relevant, use density of water as 1,000 kg/m³ and acceleration due to gravity as 10 m/s².

SECTION A

Question 1

- a) Explain the following:
 - i) Instantaneous center of velocity
 - ii) Instantaneous center of acceleration
 - iii) Coriolisis component of acceleration
- b) The ends of a link AB of length 600 mm slide in horizontal and vertical guides Ox and Oy as shown in Fig. Q1.

For the given configuration A has a velocity of 1.5m/s towards O and acceleration of 15 m/s² in the same direction.

Student Bounty.com Draw the given configuration, and velocity and acceleration diagrams clearly and neatly on graph papers to suitable scales. Hence determine:

- the angular velocity and acceleration of AB. i)
- the velocity and acceleration of the end B. ii)
- the velocity and acceleration of the mid-point G of AB. iii)

Indicate the scales of each diagrmme.

Question 2

The torque exerted on the crankshaft of an engine is given by the equation,

 $T(Nm) = 10,500 + 1,620 \sin 2\theta - 1,340 \cos 2\theta$,

where θ is the crank-angle displacement from the inner dead center. The resisting torque is constant.

Show that the mean torque is 10,500 Nm

Hence determine the following:

- a) the power of the engine when the speed is 150 rev/min.
- b) the moment of inertia of the flywheel if the speed variation is not to exceed ± 0.5 % of the mean speed,
- c) the angular acceleration of the flywheel when the crank has turned through 30° from the inner dead center.

Question 3

Fig. Q3 shows a compound pendulum comprising a non-uniform bar having a mass of 24 kg pivoted at a point O to swing in a vertical plane. The distance OG from pivot to mass center is 0.64 m. The moment of inertia of the bar about a transverse axis through O is 12.6 kg m2. The bar is swung to one side until G is level with O and released from rest. It comes to rest on the opposite swing 7° below the horizontal. There is a resistance to the motion of the pendulum as a friction torque at O of constant magnitude.

- Determine the angular velocity of the pendulum at the instant OG a) first vertical.
- Student Bounty.com If OG makes an angle θ_3 with the horizontal when the pendulum again b) comes instantaneously to rest, show that

150.7 Sin
$$\theta_3$$
 + 0.1062 θ_3 - 36.73 = 0 (θ_3 is in degrees)

Assume the air resistance is negligible. Use work and energy equation.



Fig Q3

Question 4

A platform is supported by a set of springs and a dashpot that provides viscous damping. The platform has a mass of 500 kg, springs have an effective stiffness of 72 kN/m and dashpot provides damping 20% of the critical value. The motion of the system is further subjected to a force of 720 N.

Show that the motion of the system can be represented by the a) equation

$$\ddot{x} + 4.8\dot{x} + 144x = 1.44$$

Student Bounty.com The platform is depressed downwards a distance x = 200 mm from b) its mid-equilibrium position and then released from rest. Determine the position of the platform when it comes to rest for the first time.

Question 5

- **Explain** a)
 - Linear momentum (i)
 - (ii) Angular momentum
 - (iii) **Impulse**
- b) The winding drum shown in Fig Q5 has a moment of inertia, I = 840 kg m² about the transverse axis through the center of rotation and a winding radius, R = 1.9 m.

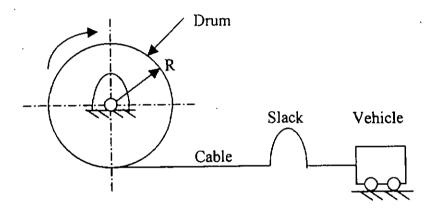


Fig. Q5

It winds a cable turning at a steady angular velocity of 12 ms⁻¹. The free end of the cable is connected to a vehicle of 184 kg mass, which is stationary on a horizontal plane and the cable being initially slack. Once the slack portion diminishes, the cable suddenly tightens.

Calculate

- (iv) the speeds of the vehicle and the drum.
- the energy lost, and (v)
- (vi) the magnitude of the impulse in the cable.

SECTION B

Question 6

(a) From first principles prove that the hydrostatic force on a plane surface placed in a liquid at an angle of inclination α to the liquid level is $\rho g \overline{z}$, where ρ is the density of the liquid and \overline{z} is the vertical distance to the centre of gravity of the plane surface from the liquid level.

Hence show that the centre of pressure locates at a distance \tilde{z}_p vertically below the liquid level given by

$$\bar{Z}_{p} = \bar{Z} + \frac{I_{c} \sin^{2} \alpha}{A \bar{Z}}$$

where I_c = Second moment of area of the plane about the transverse axis through centre of gravity and A is the area of the plane.

(b) Fig.Q6 shows a tipping arrangement, in which the gate is initially at rest at an angle 60 ⁰ to the horizontal and it starts tipping about the hinge at O when the water level reaches a certain height.

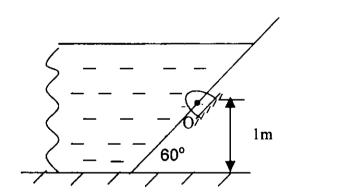


Fig. Q6

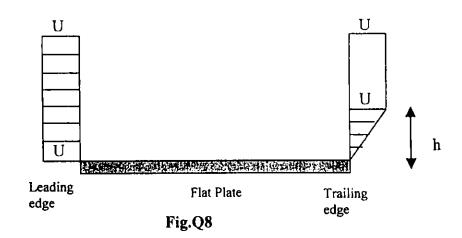
What is the depth of water for tipping to commence?

Question 7

- a) Define clearly a streamline.
- b) At a given time the velocity vector of a stream line $\underline{U} = u \underline{i} + v \underline{i} + w \underline{k}$

Student Bounty.com Considering an elementary displacement given as $\delta \underline{s} = \delta x \underline{i} + \delta y \underline{i} + \delta z \underline{k}$, where \underline{I} , \underline{i} and \underline{k} are unit vectors in the directions of x, y and z, show that

$$\frac{\delta x}{u} = \frac{\delta y}{v} = \frac{\delta z}{w}$$


- c)
- State the continuity equation for three-dimensional flow. If this flow is incompressible, explain the change of the above equation.
- ii) The velocity in an incompressible fluid flow is given by

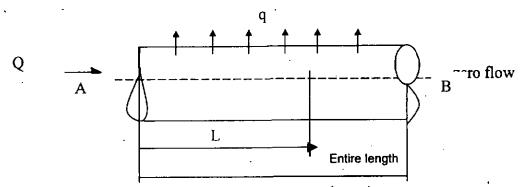
$$\underline{U} = (x^3 - y^3) \underline{i} + (z^3 - y^3) \underline{i} + w \underline{k}$$

If this flow has a stagnation point at the origin, determine the third velocity component (w).

Question 8

a) Water flows over a flat plate with the velocity at the leading edge being U and that at the trailing edge increasing linearly from zero to U over a height h. The profile of this velocity variation is shown in the Fig. Q8.

Show that the force exerted by the fluid on the plate is $(\rho U^2h/6)$.


b) A flat plate is towed longitudinally at 10 m/s in water, which is stationary otherwise. It is observed that the velocity at the trailing edge is linearly varying from the edge so that it is zero at the edge and 10m/s at a a level vertically 100 mm above the edge. Calculate the drag on the plate. Assume that the pressure is same everywhere in the flow field.

Question 9

a) A fluid flows steadily with a velocity U through a pipe of constant diameter of From first principles show that the pressure drop over a length I, is

$$h_f = \frac{fl}{d} \frac{U^2}{2g}$$
, where f is the friction factor for pipe roughness.

b) A pipe of diameter D has an arrangement as shown in Fig.Q9 to discharge the flow across its surface at a rate of q per unit length. The up stream flow rate is Q and at the end of the entire length of the pipe the flow rate is zero.

Name: - D.C. Wijewardena

Designation:- Lecturer I.D No. 691332756V

Fig. Q9

Name:- V.R Jayasekara

Designation: - Engineering Teaching Assistant

I.D No. 742531880V

Prove that the head loss over a length L.

$$h_{fL} = \frac{fLQ^2}{12D^5} \left[1 + \frac{q^2L^2}{3Q^2} - \frac{qL}{Q} \right]$$

Hence show that head loss for entire length (AB).

$$h_f = \frac{fQ^3}{36 \ qD^5}$$

Student Bounty.com

Question 10

a) $\frac{du}{dr} = \frac{1}{2\mu} \frac{dp}{dx} r$

is a relationship that can be established for laminar flow of a fluid with viscosity μ through a pipe with radius R (2R=D). $\frac{dp}{dx}$ is the pressure gradient and u is the velocity at a radius r (r<R).

Show that

- i) The velocity profile is a paraboloid of revolution.
- ii) The total discharge through the pipe

$$Q = -\frac{\pi}{128\mu} D^4 \left(\frac{dp}{dx}\right)$$

(iii) The drop in pressure over a finite length L

$$\Delta p = \frac{8\mu U}{R^2}L$$
, where U is the average velocity

b) A liquid having a viscosity of 0.098 Ns/m² and a specific gravity of 1.59 flows through a horizontal pipe of 50 mm diameter with a pressure drop of 6 kN/m² per meter length of the pipe.

Determine the following:

- i) The rate of flow in kg per minute
- ii) The maximum shear stress
- iii) The total drag for 100 m length of the pipe
- iv) Power required to maintain the flow through 100 m length of the pipe

Assume that shear stress, $\tau = -\frac{dp}{dx}\frac{r}{2}$