CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2014 series

9791 CHEMISTRY

9791/03

Paper 3 (Part B Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme Pre-U – May/June 2014	Syllabus 9791	Paper 03
1 (a) M Fe	n [Ar] e ²⁺ [Ar]	3d ⁵ 4s ² (1) 3d ⁶ (1)	9791	[2]
(b) (i)	from	energy required to remove an electron (1) each atom in a mole (1) aseous atoms (1)		[3]
(ii)	incre	tion of (successive) electrons to an inner subshell (1) eased shielding with <u>increasing nuclear charge</u> (1) action of nucleus for outer electrons remains approx. co	onstant (1)	[3]
(iii)		$\rightarrow Cr^{2+} + e^{-}(1)$		[1]
	both 2 nd from	have 4s ¹ (outer electron structure cf 4s ² for others) (1 electron removed from subshell/shell/orbital neare the nucleus (1)		ed
	SO 2	nd electron more tightly held/greater attraction (1)		[3]
(c) (i)	(initi	for Sc) increasing to (+7 for) Mn then down (to +2 for Z al) increase due to increasing no. of d electrons (1) rease due to increasing ionisation energies/nuclear ch		[3]
(ii)	FeO		0 ()	[1]
		- ()		
(d) (i)	 d) (i) ratio indicates amount of free Cl⁻ ions OR W = 3Cl⁻; X = 2Cl⁻; Y & Z = 1Cl⁻ (1) OR W = no Cl ligands; X = one Cl ligand; Y & Z = two Cl ligands 		[1]	
(ii)	w =	$[Co(NH_3)_6]^{3+} (1); \mathbf{X} = [Co(NH_3)_5 Cl]^{2+} (1)$		[2]
(iii)	stru	ctural isomerism (1)		[1]
(iv)	iv) geometric/cis-trans/ <i>E</i> –Z isomerism (1)		[1]	
(v)	(v) H_3N NH_3 Cl NH_3 RH_3N			
		С <i>і</i> NH ₃ (1)		[1]
				[Total: 22]

	Page 3		Mark Scheme	Syllabus	Paper		
	(c) (i)	thor	Pre-U – May/June 2014	9791	03 [1]		
2	(a) (i)		thermal decomposition (1)				
	(ii)		more random dispersal of molecules in gaseous CO_2 OR more random dispersal of (quanta of) energy in gaseous CO_2 (1)				
	(iii)	+160.4 = 39.7 + 213.6 - $S^{\circ}(CaCO_3)$ (1) $S^{\circ}(CaCO_3)$ = 39.7 + 213.6 - 160.4 = (+) <u>92.9</u> (J K ⁻¹ mol ⁻¹) (1) (must be 1dp)) [2]		
	(b) (i)	The enthalpy / energy change of a reaction is independent of the route (1) providing starting and final conditions are the same (1)					
	(ii)	Cycle or $\Delta_{\rm f} H^{\rm e}_{\rm products} - \Delta_{\rm f} H^{\rm e}_{\rm reactants}$ 178.3 = $\Delta_{\rm f} H^{\rm e}$ CaO + (-393.5) - (-1206.9) (1) $\Delta_{\rm f} H^{\rm e}$ CaO = 178.3 + 393.5 - 1206.9 = <u>-635.1</u> (kJ mol ⁻¹) (1) (must be 1dp)					
	(iii)	= <u>-598.3</u> (J K ⁻¹ mol ⁻¹) (1)					
		$\Delta S^{e}_{total} = \Delta S^{e}_{system} + \Delta S^{e}_{surround} = 160.4 - 598.3 = -437.9 (J K^{-1} mol^{-1}) (1)$					
	(iv)	When $\Delta S^{e}_{total} = 0$; T = $\Delta_{f} H^{e} / \Delta S^{e}_{system}$ (1) = 178 300 / 160.4 = <u>1111.6K</u> (1) Represents temperature above which reaction becomes feasible (1)					
	(c) (i)	$K_{p} = pCO_{2}(1)$					
	(ii)	$\Delta G = \Delta_r H^{\circ} - T \Delta S^{\circ}_{\text{system}} = 178.3 - (1473 \times 0.1604) (1)$ = -57.97 kJ mol ⁻¹ (1) (57 969.2 J mol ⁻¹)					
		$= \frac{-57.97 \text{ kJ mol}^{-1}}{-\text{RTln}K} (1) (57969.2 \text{ J mol}^{-1})$ $\Delta G = -\text{RTln}K \text{ so } K_p = e^{-\Delta G/\text{RT}} (1)$ $= (+)\underline{113.96} \text{ (ignore units)} (1)$					
					[Total: 19]		
3	(a) (i)	B = C = D =	(High R) voltmeter (1) salt bridge (1) 1M Cu ²⁺ (1) Pt (electrode) (1) equimolar/1M Cr ₂ O ₇ ^{2–} /Cr ³⁺ (1) acidified/H ⁺ (1)		[6]		
	(ii)	Cu ²⁺	$+2e^- \rightarrow Cu(1)$				
			$D_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O(1)$		[2]		
	(iii)	(iii) $Cr_2O_7^{2-} + 14H^+ + 3Cu \rightarrow 2Cr^{3+} + 7H_2O + 3Cu^{2+}$ (1)			[1]		
	(b) (i)	(i) $Zn:H_2 = 1:1$ $pV = nRT$ so moles $H_2 = (10^5 \times 126 \times 10^{-6})/(8.31 \times 303)$ $= 5.00 \times 10^{-3}$ mol = mol Zn (1) mass Zn = 5.01 × 10^{-3} × 65.4 = <u>0.327 g (1)</u> (must be 3 sf)					

Page 4		L	Mark Scheme	Syllabus	Paper
-			Pre-U – May/June 2014	9791	03
	(ii) amount copper = $4.88 \times 10^{-3} \times 5/2 = 0.0122 \text{ mol} (1)$ mass copper = $0.0122 \times 63.5 = 0.775 \text{ g} (1) (0.7747)$			[2]	
	(iii)		mass = 0.327 + 0.775 = 1.102g (0.775/1.102) × 100 = 70.3% (1)		[1]
(0	c) (i)		reacts with $H^{+}(1)$ quilibrium moves to right (producing more CrO_4^{2-}) (1)		[2]
	(ii)	(more orange = more dichromate hence) equilibrium has moved left so (by le Chatelier's principle, forward) reaction is endothermic/reverse is exothermic (1)			
	(iii)	 BaCrO₄ will be precipitated/form solid hence equilibrium moves to right (1) K_c unchanged (1) pH falls (1) 			
					[Total: 20]
4 (a			mers = stereoisomers that are) non-superimposable	mirror images	of
	each other (1) <i>chiral centre</i> = carbon with 4 different groups/atoms attached (1)				
()					[2]
()	(b) (i) 1:2:1 (1)				[']
	(ii) $ \begin{array}{c} \underbrace{f}_{H_3C} \\ \underbrace{d}_{CH_2} \\ \underbrace{c}_{CH_3} \\ \underbrace{e}_{CH_3} \\ \underbrace{e}_{GCH_2} \\ \underbrace{c}_{CH_3} \\ \underbrace{e}_{GCH_3} \\ \underbrace{e}_$) [3]
(0	(c) (i) H H H H H H H H H H H H H H H H H H H				
	́н́ (1) 2-methylbutanal (1)			[2]	
	(ii) oxidation (1)				[1]
	(iii)		$_{5}$ CH(CH ₃)COOH/2-methylbutanoic acid (1) H ₁₀ O ₂ + Na ₂ CO ₃ $\rightarrow 2C_{5}H_{9}O_{2}Na + CO_{2} + H_{2}O$ (1)		[2]
	 (iv) CH₃CH₂CH(CH₃)CH(OH)CN OR (semi-)displayed/skeletal (1) nucleophilic addition (1) planar carbonyl (1) attack either side (gives mix of isomers) (1) 				[4]
					["]

	Page 5	5	Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2014	9791	03
	(v)	 (v) 2-hydroxy-3-methylpentanoic acid (or unambiguous formula) (1) hydrolysis (1) 		la) (1)	[2] [Total: 17]
5	(a) (i)	A <i>l</i> C <i>l</i> CH₃((con	C ⁺ HCH₃ (1) c) HNO₃ (1) c) H₂SO₄ (1)		[6]
	(ii)		uction (1) HC <i>l</i> or Fe/HC <i>l</i> (1)		[2]
	(b) (i)		nine decolourises (1) <u>e</u> precipitate (1)		[2]
	(ii)		$_{5}$ OH + 3Br ₂ $\rightarrow C_{6}H_{2}Br_{3}$ OH + 3HBr ark for organic product, 1 mark for rest of equation cor	rect (2)	[2]
	(iii)	incre so in	I donates electrons to delocalised system/ring (1) easing charge density in/activating ring (1) acreasing <u>attraction</u> for electrophile (1) p_2 electron-withdrawing/deactivating (1)		[4]
	 (c) phenol more acidic (than ethanol) OR equilibrium lies further right OR dissociate into ions more readily (1) reduction of charge density stabilises anion (1) 				es [2]
	(d) (i)	C ₆ H	$_{5}NH_{2} + HCl \rightarrow C_{6}H_{5}NH_{3}^{(+)}Cl^{(-)}(1)$		[1]
	(ii)	elect invol	lamine > ammonia > phenylamine (1) tron-releasing ethyl group increases charge density of lvement of lone pair (of N) in benzene ring decrea opt proton in phenylamine (1)		to [3]
					[Total: 22]