

HIGHER SCHOOL CERTIFICATE EXAMINATION

1997 INDUSTRIAL TECHNOLOGY

2 UNIT SECTION III—ELECTRONICS

Total time allowed for Sections I, II, and III—One hour and a half (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Write your Student Number and Centre Number at the top right-hand corner of this page.
- Where appropriate, show working for solutions neatly and clearly.
- You may use Board-approved drawing instruments and calculators.

Section III—Electronics

- Attempt ALL questions.
- Answer questions in the spaces provided in this paper.

EXAMINER'S USE ONLY

Question		
13		
14		
15		

SECTION III—ELECTRONICS

DATA SHEET

Circuit Laws

$$E = RI$$

$$P = EI$$

$$R_r = R_1 + R_2 + R_3 + \dots$$

$$\frac{1}{R_r} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

$$C_r = C_1 + C_2 + C_3 + \dots$$

$$\frac{1}{C_r} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

$$T = RC$$

Resistors

Black	0	Blue	6	Red	2%
Brown	1	Violet	7	Gold	5%
Red	2	Grey	8	Silver	10%
Orange	3	White	9	No band	20%
Yellow	4	Gold	$\times 0.1$		
Green	5	Silver	$\times 0.01$		

BLANK PAGE

QUESTION 13. (5 marks)

(a) The circuit in Figure 1 is for a short-wave radio receiver.

EXAMINER'S USE ONLY	

(i) Complete the table below by naming the type of components indicated by EACH of the numbers 1–11 in Figure 1.

Number	Component
1	Fixed value resistor
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

(ii)	Component 7 is variable. Explain its role in the circuit.

QUESTION 13. (Continued)

(iii) Using the 4 band code, complete the table below. Assume that ALL resistors have a tolerance of five per cent.

Resistor	Value	Colour			
		Band 1	Band 2	Band 3	Band 4
R1	47 k				
R7	10 M				

(iv)	Capacit	tance values can be marked on the outside of the capacitor.	
	How would the values of C2 and C7 be indicated if BOTH had a tolerance of 5 per cent?		
	C2	10 pF	
	C7	220 pF	
(v)	Briefly	explain the role of T1, component 10, in the circuit.	
(vi)		er switch has to be included in the circuit. What type could be nd where could it be placed in the circuit?	
	Type .		
	Position	n	
vii)	What is	s the function of the THREE integrated circuits?	

QUESTION 13. (Continued)

(viii) Calculate the total manufacturing cost of EACH radio, based on the prices listed below.

\$7.60

•	Electronic components and
	circuit board per radio

• Assembly of electronics 4 minutes at \$50 per hour

• Enclosure materials per radio \$1.20

Enclosure manufacturing
 Radio assembly and testing
 2 minutes at \$30 per hour
 4 minutes at \$40 per hour

Total cost per radio \$

(b) Calculate the total resistance of the arrangement in Figure 2.

Total resistance

(c) Calculate the total capacitance of the arrangement in Figure 3.

Total capacitance

EXAMINER'S USE ONLY

QUESTION 14. (5 marks)

(a)	Compare the simplest construction of a printed circuit board (PCB), in a school workshop to that of a complex PCB mass produced in an industrial setting.				
	Creati	ng the artwork			
	Schoo	l workshop			
	Indust	ry			
	Transf	erring the image to the PCB			
	Schoo	l workshop			
	Indust	ry			
	Etchin	g			
	Schoo	l workshop			
	Indust	ry			
(b)	Variou	as soldering techniques are used, BOTH in industry and by hobbyists.			
	(i)	Briefly describe the process of wave soldering.			
	(ii)	Explain the role of flux in the soldering process.			

QUESTION 14. (Continued)

	(iii)	Sketch and describe ONE common soldering fault that may occur in the school workshop. Suggest a remedy for the fault.		
	()			
(c)	Coal,	water (hydro), and nuclear powe	er are used in mains electricity generating	
	(i)	Source. Coal	e environment of the use of EACH power	
	(ii)	What is the role of coal or nucle	ear power in the generating process?	

QUI	ESTION	N 14. (Continued)			
(d)	Fuses	are used to protect circuits.			
	(i) For a 240 V supply, calculate the current rating of the fuse suitable for protecting a 2.4 kW appliance.				
			Current rating	amps	
	(ii)	How does a circuit breaker diff	Fer from a fuse?		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
	(iii) Briefly explain how a residual current device works.				
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
(e)	Identi	fy the following CMOS integrate	ed circuits.		
		Description	Code		
		Quad NAND gate			
			CD4001		
		Decade counter/divider			
			CD4015		
(f)		gate, when connected with an Al	ND gate, will pro	oduce a NAND gate?	
(g)	How	can a NAND gate be used as a N	OT gate?		
	•••••				

QUESTION 14. (Continued)

(h) Complete the truth table for the circuit shown in Figure 4 below.

FIG. 4

A	B	C	D	Q
0	0			
1	0			
0	1			
1	1			

(i)	When using CMOS integrated circuits in circuit design, what must be done with unused inputs?

(j) Complete the table below that compares the properties of TTL and CMOS integrated circuits.

Property	TTL	CMOS
Input impedance		Very high
Switching speed	Fast	
Fan-out	Ten	

QUESTION 15. (5 marks)

EXAMINER'S USE ONLY

(a) The circuit shown in Figure 5 allows the lamp \boldsymbol{L}_1 to flash.

FIG. 5

'Introducing Electronic Systems', MW Brimicombe, Thomas Nelson & Sons 1987 p34.

(i)	Briefly explain how the circuit functions.
(ii)	What is the basic circuit called?
(iii)	If C_1 and C_2 were not of equal value, how would this affect the operation of L_1 ?

QUESTION 15. (Continued)

- (b) Students wish to adapt the circuit in part (a) to run a flashing rear bicycle light. To do this, the lamp, 4.5 V battery pack, and one resistor will be removed and then two high intensity LEDs, a 9 V battery, toggle switch, and two extra resistors will be added.
 - (i) Complete the circuit diagram for the rear bicycle light which is commenced in Figure 6. Use correct circuit symbols and component values.

FIG. 6

(ii)	What is the function of the two new resistors in the circuit?	
(iii)	Name FOUR different components in the completed Figure 6 that are polarised.	
	1	
	2	
	3	
	4	
(iv)	When mounting the project in an enclosure, it was deemed necessary to remove the LEDs from the PCB and mount them on leads.	
	Describe ONE method of preventing the legs of the LEDs from 'shorting out'.	

QUESTION 15. (Continued)

- (v) Students have a number of materials available to them for the construction of an enclosure that may be mounted on the rear of a bicycle. These include:
 - · sheet aluminium
 - Ø40 mm plastic conduit and end caps
 - small nuts and bolts.

The enclosure must house:

- a 9 V battery 50 mm long \times 25 mm wide \times 16 mm thick
- a circuit board 60 mm long \times 25 mm wide \times 15 mm thick
- two high-intensity LEDs Ø5 mm
- a toggle switch Ø8 mm.
- 1. Sketch an enclosure that could be used. Include overall dimensions on the sketch.
- 2. Indicate how it can be mounted on the rear of a bicycle.

QUESTION 15. (Continued)

(c)	A faulty transistor must be replaced in a circuit.			
	(i)	Outline the steps in removing the faulty component.		
	(ii)	What precaution must be taken when installing the new transistor?		
(d)	Outlin	e how a multimeter can be used to check if a transistor is an NPN type.		

BLANK PAGE

BLANK PAGE