OXIDATION STATES

Used to

- tell if oxidation or reduction has taken place
- · work out what has been oxidised and/or reduced
- construct half equations and balance redox equations

Atoms / simple ions

The number of electrons which must be added or removed to become neutral

atoms Na in Na = 0 neutral already ... no need to add any electrons cations Na in Na⁺ = +1 need to add 1 electron to make Na⁺ neutral anions CI in CI⁻ = -1 need to take 1 electron away to make CI⁻ neutral

0.1

What is the oxidation state of the elements in?

a) *N*

b) Fe^{3+}

 $c) S^{2-}$

d) Cu

e) Cu^{2+}

f) *Cu*⁺

Molecules Sum of oxidation states adds up to zero

Elements

 $H \text{ in } H_2 = 0$

Compounds

C in $CO_2 = +4$

and

0 = -2

+4 and 2(-2) = 0

- CO₂ is neutral, so the sum of the oxidation states must be zero
- one element must have a positive OS, the other must be negative
- the more electronegative species will have the negative value
- electronegativity increases across a period and decreases down a group
- O is further to the right in the periodic table so it has the negative value (-2)
- C is to the left so it has the positive value (+4)
- one needs two O's at -2 each to balance one C at +4

Complex ions

Sum of oxidation states adds up to the charge on the ion

in SO_4^{2-} S = +6, O = -2 [i.e. +6 + 4(-2) = -2]; therefore the ion has a 2- charge

Example

What is the oxidation state (O.S.) of Mn in MnO_4^- ?

- the O.S. of oxygen in most compounds is -2
- there are 4 O's so the sum of the O.S. $\dot{s} = -8$
- the overall charge on the ion is -1, : the sum of all the O.S.'s must add up to -1
- the O.S. of Mn plus the sum of the O.S.'s of the four O's must equal -1
- therefore the O.S. of Manganese in $MnO_4^- = +7$

WHICH OXIDATION STATE?

- elements can exist in more than one oxidation state
- certain elements can be used as benchmarks

HYDROGEN ((+1)	except		atom (H) and molecule (H ₂) hydride ion, H ⁻ [in sodium hydride, NaH]
OXYGEN ((-2)	except	0 -1 +2	atom (O) and molecule (O_2) in hydrogen peroxide, H_2O_2 in F_2O
FLUORINE ((-1)	except	0	atom (F) and molecule (F ₂)

AS2

Metals

- have positive values in compounds
- value is usually that of the Group Number Al is +3
- values can go no higher than the Group No. Mn can be +2,+4,+6,+7

Non metals

mostly negative based on their usual ion

Cl is usually -1

• can have values up to their Group No.

Cl can be +1, +3, +5, +7

- to avoid ambiguity, the oxidation state is often included in the name of a species
 - e.g. manganese(IV) oxide shows Mn is in the +4 oxidation state in MnO₂ sulphur(VI) oxide for SO₃ dichromate(VI) for $Cr_2O_7^{2-}$ phosphorus(V) chloride for PCl_5 .

Q.	2	What is the	e theoretical	maximum	oxidation	state	of the	following	elements	?
----	---	-------------	---------------	---------	-----------	-------	--------	-----------	----------	---

Na

P

Ва

Pb

S

Mn

Cr

What will be the usual and maximum oxidation state in compounds of?

Li

Br

Sr

0

В

N

USUAL

MAXIMUM

0.3 Give the oxidation state of the element other than O, H or F in

 SO_2

 NH_3

 NO_2

 NH_{4}^{+}

AS2

 IF_7

 Cl_2O_7

 MnO_4^{2-}

 NO_3^-

 NO_2^-

 SO_3^{2-} $S_2O_3^{2-}$

 $S_4O_6^{2-}$

What is odd about the value of the oxidation state of S in $S_4O_6^{2-}$? Can it have such a value? Can you provide a suitable explanation?

 $oldsymbol{Q.4}$ What is the oxidation state of each element in the following compounds ?

 CH_4

 PCl_3

 NCl_3

 CS_2

 ICl_5

 BrF_3

 $MgCl_2$

 H_3PO_4

 NH_4Cl

 H_2SO_4

 $MgCO_3$

 $SOCl_2$

REDOX REACTIONS

Redox

When reduction and oxidation take place

Oxidation

Removal of electrons; species will get less negative / more positive

Gain of electrons; species will become more negative / less positive Reduction

REDUCTION in O.S.

Species has been REDUCED

e.g. Cl is reduced to Cl⁻ (0 to -1)

INCREASE in O.S.

Species has been OXIDISED

e.g. Na is oxidised to Na⁺ (0 to +1)

OIL RIG

Oxidation Is the Loss

Reduction Is the Gain of electrons

Q.5 Classify the following (unbalanced) changes as oxidation, reduction or neither.

- a) $Mg Mg^{2+}$
- b) $O^{2} \longrightarrow O$

- c) Al^{3+} \longrightarrow Al
- d) Fe^{3+} —> Fe^{2+}
- e) Ti^{3+} —> Ti^{4+}

f) 2Q \longrightarrow Q_2

Q.6 What change takes place in the oxidation state of the underlined element? Classify the change as oxidation (O), reduction (R) or neither (N).

a) $NO_3^- \longrightarrow NO$

b) $HNO_3 \longrightarrow N_2O$

c) $CH_4 \longrightarrow CO$

- d) $Cr_2O_7^{2-} \longrightarrow Cr^{3+}$
- $e) \ \underline{S}O_3^{2-} \longrightarrow SO_4^{2-}$
- $f) Cr_2O_7^{2-} \longrightarrow CrO_4^{2-}$
- $g) H_2 \underline{O}_2 \longrightarrow H_2 O$
- $h) H_2 \mathbf{O}_2 \longrightarrow O_2$

How to balance redox half equations

Step 1 Work out the formula of the species before and after the change; balance if required

- 2 Work out the oxidation state of the element before and after the change
- 3 Add electrons to one side of the equation so that the oxidation states balance
- **4** If the charges on all the species (ions and electrons) on either side of the equation do not balance then add sufficient H⁺ ions to one of the sides to balance the charges
- 5 If the equation still doesn't balance, add sufficient water molecules to one side

Example 1 Iron(II) being oxidised to iron(III).

Step 1 Fe^{2+} \longrightarrow Fe^{3-}

Step 2 +2 +3

Step 3 Fe^{2+} ——> Fe^{3+} + e^{-}

now balanced

Example 2 MnO₄ being reduced to Mn²⁺ in acidic solution

Step 1 $MnO_4^ \longrightarrow$ Mn^{2+}

Step 2 +7 +2

Step 3 $MnO_4^- + 5e^- \longrightarrow Mn^{2+}$

Step 4 $MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+}$

Step 5 $MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$ now balanced

Q.7 Balance the following half equations

 I_2 \longrightarrow I^-

 $C_2O_4^{2-}$ -> $2CO_2$

 H_2O_2 \longrightarrow O_2

 H_2O_2 \longrightarrow H_2O

 $Cr_2O_7^{2-}$ —> Cr^{3+}

 SO_4^{2-} \longrightarrow SO_2

Combining half equations

A combination of two ionic half equations, one involving oxidation and the other reduction, produces a balanced REDOX equation. The equations can be balanced as follows...

Step

- **1** Write out the two half equations
- 2 Multiply the equations so that the number of electrons in each is the same
- 3 Add the two equations and cancel out the electrons on either side of the equation
- 4 If necessary, cancel out any other species which appear on both sides of the equation

Example

The reaction between manganate(VII) and iron(II).

Step 1
$$Fe^{2+}$$
 —> Fe^{3+} + e^{-} Oxidation MnO_4^- + $5e^-$ + $8H^+$ —> Mn^{2+} + $4H_2O$ Reduction

Step 2
$$5Fe^{2+}$$
 ---> $5Fe^{3+}$ + $5e^{-}$ multiplied by 5 MnO_4^- + $5e^-$ + $8H^+$ ---> Mn^{2+} + $4H_2O$ multiplied by 1

Step 3
$$MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 5e^-$$

Step 4
$$MnO_4^- + 56^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 56^-$$

gives
$$MnO_4^- + 8H^+ + 5Fe^{2+}$$
 ---> $Mn^{2+} + 4H_2O + 5Fe^{3+}$

Q.8 Construct balanced redox equations for the reactions between

- a) Mg and H^+
- b) $Cr_2O_7^{2-}$ and Fe^{2+}
- c) H_2O_2 and MnO_4^-
- d) $C_2O_4^{2-}$ and MnO_4^{-} e) $S_2O_3^{2-}$ and I_2
- f) $Cr_2O_7^{2-}$ and I^-