OXIDATION NUMBERS

Used to - tell if oxidation or reduction has taken place

- work out what has been oxidised and/or reduced
- construct half equations and balance redox equations

Atoms and
 simple ions

The number of electrons which must be added or removed to become neutral'

atoms Na in $\mathrm{Na}=0$ neutral already ... no need to add any electrons cations Na in $\mathrm{Na}^{+}=+1 \quad$ need to add 1 electron to make Na^{+}neutral anions $\quad \mathrm{Cl}$ in $\mathrm{Cl}^{-}=-1 \quad$ need to take 1 electron away to make Cl^{-}neutral
Q. 1 What is the oxidation state of the elements in?
a) N
b) Fe^{3+}
c) S^{2-}
d) Cu
e) Cu^{2+}
f) Cu^{+}

Molecules 'The sum of the oxidation numbers adds up to zero'

Elements $\quad \mathrm{H}$ in $\mathrm{H}_{2}=0$

Compounds C in $\mathrm{CO}_{2}=+4$ and $\mathrm{O}=-2+4$ and $2(-2)=0$

- CO_{2} is neutral, so the sum of the oxidation numbers must be zero
- one element must have a positive ON, the other must be negative
- the more electronegative species will have the negative value
- electronegativity increases across a period and decreases down a group
- O is further to the right in the periodic table so it has the negative value (-2)
- C is to the left so it has the positive value (+4)
- one needs two O's at -2 each to balance one C at +4
Q. 2 If the oxidation number of O is -2 , state the oxidation number of the other element in...
a) SO_{2}
b) SO_{3}
(c) NO
d) NO_{2}
e) $\mathrm{N}_{2} \mathrm{O}$
f) MnO_{2}
g) $\mathrm{P}_{4} \mathrm{O}_{10}$
h) $\mathrm{Cl}_{2} \mathrm{O}_{7}$

Complex 'The sum of the oxidation numbers adds up to the charge on the ion' ions

in $\mathrm{SO}_{4}{ }^{2-} \mathrm{S}=+6, \mathrm{O}=-2$ [i.e. $+6+4(-2)=-2$] the ion has a 2- charge

Example \quad What is the oxidation number (O.N.) of Mn in $\mathrm{MnO}_{4}{ }^{-}$?

- the O.N. of oxygen in most compounds is -2
- there are 4 O's so the sum of the O.N. 's = -8
- the overall charge on the ion is $-1, \therefore$ sum of all the O.N.'s must add up to -1
- the O.S. of Mn plus the sum of the O.N.'s of the four O's must equal -1
- therefore the O.N. of Manganese in $\mathrm{MnO}_{4}^{-}=+7$

WHICH OXIDATION NUMBER ?

- elements can exist in more than one oxidation state
- certain elements can be used as benchmarks

HYDROGEN (+1)	except	$\begin{array}{r} 0 \\ -1 \end{array}$	atom (H) and molecule $\left(\mathrm{H}_{2}\right)$ hydride ion, H^{-}[in sodium hydride, NaH]
OXYGEN (-2)	except	$\begin{gathered} 0 \\ -1 \\ +2 \end{gathered}$	atom (O) and molecule $\left(\mathrm{O}_{2}\right)$ in hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{F}_{2} \mathrm{O}$
FLUORINE (-1)	except	0	atom (F) and molecule (F_{2})

Metals • have positive values in compounds

- value is usually that of the Group Number
- values can go no higher than the Group No.

Al is +3
Mn can be $+2,+4,+6,+7$

Non metals • mostly negative based on their usual ion
Cl is usually -1

- can have values up to their Group No.

Cl can be $+1,+3,+5,+7$

- to avoid ambiguity, the oxidation number is often included in the name
e.g. manganese(IV) oxide shows Mn is in the +4 oxidation state in MnO_{2} sulphur(VI) oxide for SO_{3}
dichromate(VI) for $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
phosphorus(V) chloride for PCl_{5}.
Q. 3 What is the theoretical maximum oxidation state of the following elements ?
$N a$
P
Ba
Pb
S
Mn
Cr

State the most common and the maximum oxidation number in compounds of...
Li
$B r$
Sr
O
B
N

COMMON

MAXIMUM
Q. 4 Give the oxidation number of the element other than O, H or F in

SO_{2}	NH_{3}	NO_{2}	$\mathrm{NH}_{4}{ }^{+}$
IF_{7}	$\mathrm{Cl}_{2} \mathrm{O}_{7}$	$\mathrm{MnO}_{4}{ }^{2-}$	$\mathrm{NO}_{3}{ }^{-}$
$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	$\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$

What is odd about the value of the oxidation state of S in $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$?
Can it have such a value ? Can you provide a suitable explanation?
Q. 5 What is the oxidation number of each element in the following compounds ?

CH_{4}	$\begin{aligned} & C= \\ & H= \end{aligned}$	PCl_{3}	$\begin{aligned} & P= \\ & C l= \end{aligned}$	NCl_{3}	$\begin{aligned} & N= \\ & C l= \end{aligned}$
$C S_{2}$	$C=$	ICl_{5}	$I=$	BrF_{3}	$B r=$
	$S=$		$C l=$		$F=$
MgCl_{2}	$M g=$	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\boldsymbol{H}=$	$\mathrm{NH}_{4} \mathrm{Cl}$	$N=$
	$C l=$		$P=$		$\boldsymbol{H}=$
			$O=$		$C l=$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\boldsymbol{H}=$	MgCO_{3}	$M g=$	SOCl_{2}	$S=$
	$S=$		$C=$		$O=$
	$O=$		$O=$		$C l=$

REDOX REACTIONS

Redox When reduction and oxidation take place
Oxidation Removal of electrons; species get less negative / more positive
Reduction Gain of electrons; species becomes more negative / less positive
REDUCTION in O.N. Species has been REDUCED
e.g. Cl is reduced to $\mathrm{Cl}^{-}(0$ to -1$)$

INCREASE in O.N. Species has been OXIDISED
e.g. Na is oxidised to $\mathrm{Na}^{+}(0$ to +1$)$

OIL RIG	Oxidation Is the Loss Reduction Is the Gain of electrons

Q. 6 Classify the following (unbalanced) changes as oxidation, reduction or neither.
a) Mg \qquad $\rightarrow \mathrm{Mg}^{2+}$
b) $\mathrm{O}^{2-} \longrightarrow \mathrm{O}$
c) $A l^{3+} \longrightarrow A l$
d) $\mathrm{Fe}^{3+} \longrightarrow \mathrm{Fe}^{2+}$
e) $T i^{3+} \longrightarrow T i^{4+}$
f) $2 Q \longrightarrow Q_{2}$
Q. 7 What change takes place in the oxidation state of the underlined element? Classify the change as oxidation (O), reduction (R) or neither (N).
a) $\mathrm{N}_{3}{ }_{3}^{-} \longrightarrow \mathrm{NO}$
b) $\mathrm{H}_{\mathrm{N}} \mathrm{O}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}$
c) $\mathrm{CH}_{4} \longrightarrow \mathrm{CO}$
d) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \longrightarrow \mathrm{Cr}^{3+}$
e) $\mathrm{S} \mathrm{O}_{3}{ }^{2-} \longrightarrow \mathrm{SO}_{4}{ }^{2-}$
f) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{CrO}_{4}{ }^{2-}$
g) $\mathrm{H}_{2} \underline{\boldsymbol{O}}_{2}$ \qquad $>\mathrm{H}_{2} \mathrm{O}$
h) $\mathrm{H}_{2} \underline{\boldsymbol{O}}_{2} \longrightarrow \mathrm{O}_{2}$

How to balance redox half equations

Step 1 Work out the formula of the species before and after the change;
2 If different numbers of the relevant species are on both sides, balance them
3 Work out the oxidation number of the element before and after the change
4 Add electrons to one side of the equation so the oxidation numbers balance
5 If the charges on all the species (ions and electrons) on either side of the equation do not balance, add H^{+}ions to one side to balance the charges
6 If the equation still doesn't balance, add sufficient water molecules to one side

Example 1 Iron(II) being oxidised to iron(III).

Steps $1 / 2$	$\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}$		
Step 3	+2		+3

Step $4 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$now balanced

Example $2 \mathrm{MnO}_{4}{ }^{-}$being reduced to Mn^{2+} in acidic solution
Steps $\mathbf{1 / 2} \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}$
Step $3+7+2$
Step $4 \mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}$
Step $5 \mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}$
Step $6 \mathrm{MnO}_{4}^{-}+5 e^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ now balanced
Q. 8 Balance the following half equations

I_{2}	->	I^{-}
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	->	$2 \mathrm{CO}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2}$	->	O_{2}
$\mathrm{H}_{2} \mathrm{O}_{2}$	->	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	->	Cr^{3+}
$\mathrm{SO}_{4}{ }^{2-}$	->	SO_{2}

Combining half equations

A combination of two ionic half equations, one involving oxidation and the other reduction, produces a balanced REDOX equation. The equations can be balanced as follows...

Step 1 Write out the two half equations
2 Multiply the equations so that the number of electrons in each is the same
3 Add the equations and cancel out the electrons on either side of the equation
4 If necessary, cancel out any other species which appear on both sides

Example The reaction between manganate(VII) and iron(II).

Step $1 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+e^{-}$ Oxidation

$$
\mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

Reduction

Step $25 \mathrm{Fe}^{2+} \longrightarrow 5 \mathrm{Fe}^{3+}+5 e^{-} \quad$ multiplied by 5

$$
\mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad \text { multiplied by } 1
$$

Step $3 \mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}+5 \mathrm{e}^{-}$

$$
\mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}+5 e^{-}
$$

gives $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$
Q. 9 Construct balanced redox equations for the reactions between
a) Mg and H^{+}
b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and Fe^{2+}
c) $\mathrm{H}_{2} \mathrm{O}_{2}$ and MnO_{4}^{-}
d) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ and MnO_{4}^{-}
e) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ and I_{2}
f) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and I^{-}

