OXIDATION NUMBERS

F321

Used to

Molecules

- tell if oxidation or reduction has taken place
- work out what has been oxidised and/or reduced
- construct half equations and balance redox equations

Atoms and simple ions		The number of electrons which must be added or removed to become neutral'		
	atoms	Na in Na = 0	neutral already no need to add any electrons	
	cations	Na in Na⁺ = +1	need to add 1 electron to make Na ⁺ neutral	
	anions	Cl in $Cl = -1$	need to take 1 electron away to make Cl ⁻ neutral	

<i>Q.1</i>	What is the oxidation state of the elements in ?			
	<i>a) N</i>	<i>b) Fe</i> ³⁺	$c) S^{2-}$	
	d) Cu	<i>e) Cu</i> ²⁺	f) Cu ⁺	

Elements	H in H_2	= 0				
Compounds	C in CO_2	= +4 and	O = -2 +4	4 and 2(-2) = 0	
	 CO₂ is neu one eleme the more e electroneg O is further C is to the one needs 	Itral, so the sum nt must have a lectronegative s gativity increas r to the right in t left so it has the two O's at -2 e	n of the oxidati positive ON, th species will ha ses across a p the periodic tak positive value ach to balance	on numbers n the other must ve the negativ period and de ble so it has th e (+4) e one C at +4	nust be zero be negative ve value ecreases dou ne negative vi	wn a group alue (-2)
<i>Q.2</i>	If the oxidation a) SO ₂	on number of O i. b) S	s -2, state the o_3	cidation number (c) NO	r of the other e d)	element in NO ₂
	e) N ₂ O	f) M	nO_2	g) P ₄ O ₁₀	h)	Cl_2O_7

'The sum of the oxidation numbers adds up to zero'

Complex 'The sum of the oxidation numbers adds up to the charge on the ion' ions in $SO_4^{2^-}$ S = +6, O = -2 [i.e. +6 + 4(-2) = -2] the ion has a 2- charge

F321

Example What is the oxidation number (O.N.) of Mn in MnO_4^- ?

- the O.N. of oxygen in most compounds is -2
- there are 4 O's so the sum of the O.N.'s = -8
- the overall charge on the ion is -1, : sum of all the O.N.'s must add up to -1
- the O.S. of Mn plus the sum of the O.N.'s of the four O's must equal -1
- therefore the O.N. of Manganese in $MnO_4^- = +7$

WHICH OXIDATION NUMBER ?

- elements can exist in more than one oxidation state
- certain elements can be used as benchmarks

HYDROGEN (+1)	except	0 -1	atom (H) and molecule (H₂) hydride ion, H⁻ [in sodium hydride, NaH]
OXYGEN (-2)	except	0 -1 +2	atom (O) and molecule (O ₂) in hydrogen peroxide, H_2O_2 in F_2O
FLUORINE (-1)	except	0	atom (F) and molecule (F_2)

Metals	 have 	positive values in compounds			
	• value	e is usually that of the Group Number	Al is +3		
	 value 	es can go no higher than the Group No.	<i>Mn can be</i> +2,+4,+6,+7		
Non metals	• most	ly negative based on their usual ion	Cl is usually -1		
	• can have values up to their Group No. Cl can be +1, +3, +5, +7				
	 to avoid ambiguity, the oxidation number is often included in the name 				
	e.g. manganese(IV) oxide shows Mn is in the +4 oxidation state in I sulphur(VI) oxide for SO ₃ dichromate(VI) for Cr ₂ O- ²⁻				
		phosphorus(V) chloride for PCl5.			

F321

Q.4Give the oxidation number of the element other than O, H or F in
 SO_2 NH_3 NO_2 NH_4^+ IF_7 Cl_2O_7 MnO_4^{2-} NO_3^-

 SO_{3}^{2-}

 NO_2^-

What is odd about the value of the oxidation state of S in $S_4O_6^{2-}$? Can it have such a value? Can you provide a suitable explanation?

 $S_2 O_3^{2-}$

 $S_4 O_6^{2-}$

<i>Q</i> .5	What is the oxidation number of each element in the following compounds?					
	CH_4	<i>C</i> =	PCl_3	<i>P</i> =	NCl ₃	N =
		<i>H</i> =		<i>Cl</i> =		<i>Cl</i> =
	CS_2	<i>C</i> =	ICl_5	I =	BrF ₃	Br =
		<i>S</i> =		<i>Cl</i> =		F =
	$MgCl_2$	<i>Mg</i> =	H_3PO_4	<i>H</i> =	NH₄Cl	N =
		Cl =		<i>P</i> =		<i>H</i> =
				<i>O</i> =		Cl =
	H_2SO_4	<i>H</i> =	MgCO ₃	Mg =	$SOCl_2$	<i>S</i> =
		<i>S</i> =		<i>C</i> =		0 =
		0 =		0 =		<i>Cl</i> =

Q.6Classify the following (unbalanced) changes as oxidation, reduction or neither.a) $Mg \longrightarrow Mg^{2+}$ b) $O^{2-} \longrightarrow O$ c) $Al^{3+} \longrightarrow Al$ d) $Fe^{3+} \longrightarrow Fe^{2+}$ e) $Ti^{3+} \longrightarrow Ti^{4+}$ f) $2Q \longrightarrow Q_2$

Q.7 What change takes place in the oxidation state of the underlined element ? Classify the change as oxidation (O), reduction (R) or neither (N).

a)
$$\underline{N}O_3^- \longrightarrow NO$$

b) $\underline{HN}O_3 \longrightarrow N_2O$
c) $\underline{C}H_4 \longrightarrow CO$
d) $\underline{Cr}_2O_7^{2-} \longrightarrow Cr^{3+}$
e) $\underline{S}O_3^{2-} \longrightarrow SO_4^{2-}$
f) $\underline{Cr}_2O_7^{2-} \longrightarrow CrO_4^{2-}$
g) $H_2O_2 \longrightarrow H_2O$
h) $H_2O_2 \longrightarrow O_2$

Step

How to balance redox half equations

1 Work out the formula of the species before and after the change;

2 If different numbers of the relevant species are on both sides, balance them

F321

- 3 Work out the oxidation number of the element before and after the change
- 4 Add electrons to one side of the equation so the oxidation numbers balance
- **5** If the charges on all the species (ions and electrons) on either side of the equation do not balance, add H⁺ ions to one side to balance the charges
- 6 If the equation still doesn't balance, add sufficient water molecules to one side
- Example 1 Iron(II) being oxidised to iron(III).

Steps1/2	Fe^{2+} ———> Fe^{3+}	
Step 3	+2 +3	
Step 4	Fe^{2+} —> Fe^{3+} + e^{-}	now balanced

Example 2 MnO_4^- being reduced to Mn^{2+} in acidic solution

Steps 1/2	$MnO_4^- \longrightarrow Mn^{2+}$
Step 3	+7 +2
Step 4	$MnO_4^{-} + 5e^{-} \longrightarrow Mn^{2+}$
Step 5	$MnO_4^- + 5e^- + 8H^+ - Mn^{2+}$
Step 6	$MnO_4^- + 5e^- + 8H^+ - Mn^{2+} + 4H_2O$ now balanced

Q.8

Balance the following half equations

I_2	—>	Ι-
$C_2 O_4^{2-}$	—>	$2CO_2$
H_2O_2	—>	O_2
H_2O_2	—>	H_2O
$Cr_2O_7^{2-}$	_>	Cr^{3+}
SO_4^{2-}	->	SO_2

Combining half equations

A combination of two ionic half equations, one involving oxidation and the other reduction, produces a balanced REDOX equation. The equations can be balanced as follows...

F321

Step 1 Write out the two half equations

- 2 Multiply the equations so that the number of electrons in each is the same
- 3 Add the equations and cancel out the electrons on either side of the equation
- 4 If necessary, cancel out any other species which appear on both sides

Example The reaction between manganate(VII) and iron(II).

Step 1	Fe^{2+} —> Fe^{3+} + e^{-}	Oxidation
	MnO4 ⁻ + 5e ⁻ + 8H ⁺ > Mn ²⁺ + 4H2O	Reduction

Step 2	$5Fe^{2+}$ —> $5Fe^{3+}$ + $5e^{-}$	multiplied by 5
	$MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$	multiplied by 1

Step 3 $MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 5e^-$

 $MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 5e^-$

gives $MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$

Q.9 Construct balanced redox equations for the reactions between a) Mg and H⁺ b) $Cr_2O_7^{2-}$ and Fe^{2+} c) H_2O_2 and $MnO_4^$ d) $C_2O_4^{2-}$ and $MnO_4^$ e) $S_2O_3^{2-}$ and I_2 f) $Cr_2O_7^{2-}$ and I^-