

EMPIRICAL FORMULAE & MOLAR MASS CALCULATIONS

Empirical Formula

- expresses the elements in their simplest ratio CH₂ or CHO
- can sometimes be the same as the molecular formula H₂O and CH₄

	Molecular Formula	Empirical Formula
Sulphur dioxide	SO ₂	SO ₂
Hydrogen peroxide	H ₂ O ₂	НО
Ethanoic acid	C ₂ H ₄ O ₂	CH ₂ O
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O

Calculations

You need

· percentage mass

and

· relative atomic mass

Example

Calculate the empirical formula of a compound having C (69.8%), O (18.6%), H (11.6%)

	С	Н	0
1. Write out percentage by mass	69.8	11.6	18.6
2. Divide by relative atomic mass	69.8 / 12	11.6/1	18.6 / 16
- this gives the mole ratio	5.81	11.6	1.16
3. If not whole numbers then scale up - try dividing by smallest value (1.16)	5	10	1
4. Express as a formula	$C_5H_{10}O$		

Molecular Formula

The exact number of atoms of each element in the formula - e.g. C₄H₈

Calculations

- Compare the empirical formula with the relative molecular mass.
- Relative molecular mass will be an exact multiple (x1, x2 etc.) of its relative empirical mass.

Ideal Gas Equation

$$PV = \underbrace{m R}_{M} T$$

$$\begin{array}{cccc} \textit{where} & \textbf{P} & \textit{pressure} & \textit{Pa} \\ & \textbf{V} & \textit{volume} & \textit{m}^3 \\ & \textbf{T} & \textit{temperature} & \textbf{K} \\ \end{array}$$

M molar mass g mol⁻¹

m mass g

n moles of gasR gas constant 8.31 J mol ⁻¹ K ⁻¹

EXAMPLE CALCULATION

A chemist collected 3.00g of a gas in a 400cm^3 flask. The temperature was 25°C and the pressure was 4.2×10^5 Pa. Calculate the molar mass of the gas.

• Rearrange the equation
$$M = mRT$$

• Convert values to correct units $400 \text{ cm}^3 = 0.0004 \text{ m}^3$ (there are 10^6 cm^3 in a m³)

$$25^{\circ}\text{C} = 25 + 273 = 298\text{K}$$

• Substitute in the equation $M = \frac{3.00 \times 8.31 \times 298}{4.2 \times 10^5 \times 0.0004}$

ANSWER $M = 44.22 \text{ g mol}^{-1}$