EMPIRICAL FORMULAE \& MOLAR MASS CALCULATIONS

Empirical
 Formula

Calculations
Example

Molecular

Formula

Calculations

Ideal Gas Equation

- expresses the elements in their simplest ratio - CH_{2} or CHO
- can sometimes be the same as the molecular formula - $\mathrm{H}_{2} \mathrm{O}$ and CH_{4}

	Molecular Formula	Empirical Formula
Sulphur dioxide	SO_{2}	SO_{2}
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO
Ethanoic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$\mathrm{CH}_{2} \mathrm{O}$
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$

You need - percentage mass and - relative atomic mass
Calculate the empirical formula of a compound having C (69.8\%), O (18.6\%), H (11.6\%)

	C	\mathbf{H}	\mathbf{O}
1. Write out percentage by mass	69.8	11.6	18.6
2. Divide by relative atomic mass	$69.8 / 12$	$11.6 / 1$	$18.6 / 16$
- this gives the mole ratio	5.81	11.6	1.16
3. If not whole numbers then scale up			
- try dividing by smallest value (1.16)	5	10	1
4. Express as a formula	$\mathbf{C}_{5} \mathbf{H}_{10} \mathbf{O}$		

The exact number of atoms of each element in the formula - e.g. $\mathrm{C}_{4} \mathrm{H}_{8}$

- Compare the empirical formula with the relative molecular mass.
- Relative molecular mass will be an exact multiple ($\times 1, \mathrm{x} 2$ etc.) of its relative empirical mass.

$$
P V=n R T
$$

$P V=\frac{m R T}{M}$

where
V volume m^{3}
T temperature K
M molar mass $\mathrm{g} \mathrm{mol}^{-1}$
m mass g
n moles of gas
R gas constant $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

EXAMPLE CALCULATION

A chemist collected 3.00 g of a gas in a $400 \mathrm{~cm}^{3}$ flask. The temperature was $25^{\circ} \mathrm{C}$ and the pressure was $4.2 \times 10^{5} \mathrm{~Pa}$. Calculate the molar mass of the gas.

- Rearrange the equation $\quad M=\frac{\mathrm{mR} \mathrm{T}}{\mathrm{P} \mathrm{V}}$
- Convert values to correct units $400 \mathrm{~cm}^{3}=0.0004 \mathrm{~m}^{3}$
(there are $10^{6} \mathrm{~cm}^{3}$ in a m${ }^{3}$)

$$
25^{\circ} \mathrm{C}=25+273=298 \mathrm{~K}
$$

- Substitute in the equation
$\mathrm{M}=\frac{3.00 \times 8.31 \times 298}{4.2 \times 10^{5} \times 0.0004}$

