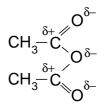

DERIVATIVES OF CARBOXYLIC ACIDS

ACYL (ACID) CHLORIDES - RCOCI

named from corresponding acid remove -ic add -yl chloride

CH₃COCI ethanoyl chloride C₆H₅COCI benzene carbonyl chloride



bonding in acyl chlorides

ACID ANHYDRIDES - (RCO)2O

named from corresponding acid remove acid add anhydride

(CH₃CO)₂O ethanoic anhydride

bonding in acid anhydrides

Chemical Properties

- · colourless liquids which fume in moist air
- acyl chlorides are more reactive than anhydrides
- · attacked at the positive carbon centre by nucleophiles
- · nucleophiles include water, alcohols, ammonia and amines
- undergo addition-elimination reactions

Uses of Acylation

Industrially Manufacture of

Cellulose acetate

- making fibres

Aspirin (acetyl salicylic acid)

- analgaesic

Ethanoic anhydride is more useful

- cheaper
- less corrosive
- · less vulnerable to hydrolysis
- · less dangerous reaction

Laboratory

Used to make

carboxylic acid, esters, amines, N-substituted amines

Ethanoyl chloride is used as it

- is more reactive
- · gives a cleaner reaction

Q.1

Investigate how aspirin is made industrially and in the laboratory.

Why are the reagents and chemicals different?

What properties of Aspirin make it such a useful drug?

ADDITION ELIMINATION REACTIONS - OVERVIEW

Mechanism

- species attacked by nucleophiles at the positive carbon end of the C=O bond
- the nucleophile adds to the molecule
- either CI or RCOO is eliminated
- · a proton is removed

General example - with water

ACID CHLORIDES

ACID ANHYDRIDES

$$(RCO)_2O + H_2O \longrightarrow 2RCOOH$$

Use these mechanisms to help construct others in the spaces which follow

SYNTHETIC POSSIBILITIES

	PRODUCT WITH				By-product
	WATER	ALCOHOLS	AMMONIA	AMINES	Бу-ргошист
ACYL CHLORIDE	CARBOXYLIC ACID	ESTER	AMIDE	N-SUBSTITUTED AMIDE	HCl
ACID ANHYDRIDE	CARBOXYLIC ACID	ESTER	AMIDE	N-SUBSTITUTED AMIDE	CARBOXYLIC ACID

ADDITION ELIMINATION - the reactions

ACYL (ACID) CHLORIDES - RCOCI

Water carboxylic acid + HCI (fume in moist air / strong acidic solution formed) Product(s)

> Conditions cold water

Equation $CH_3COCI_{(I)} + H_2O_{(I)} \longrightarrow CH_3COOH_{(aq)} + HCI_{(aq)}$

Mechanism addition-elimination

$$\begin{array}{c} Cl \\ CH_{3} \\ CH_{3} \\ H-\ddot{O}: \\ H \end{array} \xrightarrow{\begin{array}{c} Cl \\ CH_{3}-C-\ddot{O}: \\ H \end{array}} \xrightarrow{\begin{array}{c} Cl \\ CH_{3}-C-\ddot{O}: \\ H \end{array}} \xrightarrow{\begin{array}{c} Cl \\ CH_{3} \\ CH_{3} \end{array}} C=0 \xrightarrow{\begin{array}{c} CH_{3}-C \\ OH \end{array}} \xrightarrow{\begin{array}{c} Cl \\ CH_{3}-C \\ OH \end{array}} + \text{ HCI}$$

ester + hydrogen chloride **Alcohols** Product(s)

> Conditions reflux in dry (anhydrous) conditions

Equation $CH_3COCI_{(I)} + CH_3OH_{(I)} \longrightarrow CH_3COOCH_{3(I)} + HCI_{(g)}$

Mechanism addition-elimination

$$\begin{array}{c} Cl \\ CH_{3} \\ CH_{4} \\ CH_{4} \\ CH_{5} \\$$

• C_3H_7COCl and H_2O • C_2H_5COCl and C_2H_5OH

Q.3 How would you synthesis the following.

• methyl butanoate

• $C_6H_5COOCH_3$ • butyl methanoate

• $CH_3COOC(CH_3)_2$

Ammonia Product(s) Amide + hydrogen chloride

> **Conditions** Low temperature and excess ammonia. Vigorous reaction.

Equation $CH_3COCI_{(I)} + NH_{3(aq)} \longrightarrow CH_3CONH_{2(s)} + HCI_{(q)}$

> $CH_3COCI_{(I)}$ + $2NH_{3(aq)}$ ---> $CH_3CONH_{2(s)}$ + $NH_4CI_{(s)}$ or

Α4

Mechanism addition-elimination

Amines Product(s) N-substituted amide + hydrogen chloride

> Conditions anhydrous

 $CH_3COCI_{(I)} + C_2H_5NH_{2(aq)} \longrightarrow CH_3CONHC_2H_{5(s)} + HCI_{(g)}$ Equation

 $CH_{3}COCI_{(I)} \ + \ 2C_{2}H_{5}NH_{2(aq)} \ ----> \ CH_{3}CONHC_{2}H_{5(s)} \ + \ C_{2}H_{5}NH_{3}CI_{(s)}$ or

Mechanism addition-elimination - similar to that with ammonia

$$\begin{array}{c}
Cl \\
CH_{3} \\
CH_{3} \\
CH_{3} \\
R
\end{array}$$

$$\begin{array}{c}
Cl \\
CH_{3} \\
CH_{3} \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
R
\end{array}$$

Why are two moles of ammonia (or amine) required in each equation?

What pairs of chemicals would you use to synthesis the following?

• $C_2H_5CONH_2$

• CH₃CON(CH₃)₂ • N-phenylethanamide

ACID ANHYDRIDES - (RCO)₂O

Product(s) Water carboxylic acid (weak acidic solution formed)

> Conditions cold water - but can be slow

Equation $(CH_3CO)_2O_{(I)} + H_2O_{(I)} \longrightarrow 2CH_3COOH_{(aq)}$

Mechanism

$$\begin{array}{c} CH_3-C \\ CH_3-C \\ CH_3-C \\ CH_3-C \\ O\delta- \\ H-O: \\ H \end{array} \longrightarrow \begin{array}{c} CH_3-C \\ CH_3-C \\ OH \end{array} \longrightarrow \begin{array}{c} CH_3-C \\ CH_3-C \\ OH \end{array} \longrightarrow \begin{array}{c} CH_3-C \\$$

Alcohols Product(s) ester + carboxylic acid

> Conditions reflux in dry (anhydrous) conditions

 $(CH_3CO)_2O_{(l)} + CH_3OH_{(l)} \longrightarrow CH_3COOCH_{3(l)} + CH_3COOH_{(aq)}$ Equation

Mechanism

wnat organic product(s) is/a
(C₃H₇CO)₂O and H₂O
(CH₃CO)₂O and C₂H₅OH
(CH₃CO)₂O What organic product(s) is/are formed when the following pairs react?

- $(CH_3CO)_2O$ and $(CH_3)_2CHOH$

Ammonia Product(s) Amide + carboxylic acid

Conditions Low temperature and excess ammonia.

Equation $(CH_3CO)_2O_{(1)} + NH_{3(aq)} \longrightarrow CH_3CONH_{2(s)} + CH_3COOH_{(aq)}$

or $(CH_3CO)_2O_{(I)} + 2NH_{3(aq)} \longrightarrow CH_3CONH_{2(s)} + CH_3COO^-NH_4^+_{(s)}$

Mechanism

Amines Product(s) N-substituted amide + carboxylic acid

Equation
$$(CH_3CO)_2O_{(l)} + C_2H_5NH_{2(aq)} \longrightarrow CH_3CONHC_2H_{5(s)} + CH_3COOH_{(aq)}$$

or $(CH_3CO)_2O_{(1)} + 2C_2H_5NH_{2(aq)} \longrightarrow CH_3CONHC_2H_{5(s)} + CH_3COO^-NH_4^+_{(s)}$

Mechanism

Q.7 What organic product(s) is/are formed when the following pairs react?

- $(C_3H_7CO)_2O$ and NH_3
- $(CH_3CO)_2O$ and $C_2H_5NH_2$
- $(CH_3CO)_2O$ and $(CH_3)_2NH$