WHAT ARE EQUATIONS ?

It's an equation Jim, but not as mathematicians know it!

What does the following equation tell you ? $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

- Initially, it says
- but more importantly it says or, to put it another way
- in posh chemical terms it says
sulphuric acid reacts with sodium hydroxide to give sodium sulphate and water you will need two sodium hydroxides to react with every one sulphuric acid you need twice as many sodium hydroxides as sulphuric acids moles of $\mathrm{NaOH}=2 \mathrm{x}$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
Q. 1 Look at the following equations and answer the questions about them;

$$
\text { a) } \mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

If you start with $60 \mathrm{CaCO}_{3}$'s, how many CaO 's will you get?
b) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \longrightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

If you start with $20 \mathrm{H}_{2} \mathrm{SO}_{4}$'s, how many KOH's will you need?
How many $\mathrm{H}_{2} \mathrm{SO}_{4}$'s will you need to make $100 \mathrm{H}_{2} \mathrm{O}$'s ?
How many KOH's will you need to make $20 \mathrm{H}_{2} \mathrm{O}$'s ?
How many KOH's will you need to make $1840 \mathrm{~K}_{2} \mathrm{SO}_{4}$'s ?

MOLES

General - the mole is the standard unit of amount ... its value is 6.022×10^{23} - known as Avogadro's Constant

- it is a way of expressing large numbers in an 'easier to say' way!
- the number of moles of a substance can be calculated as follows ...

$$
\text { MOLES }=\text { MASS / MOLAR MASS }
$$

re-arranging

$$
\begin{aligned}
\text { mass } & =\text { moles } x \text { molar mass } \\
\text { molar mass } & =\text { mass } / \text { moles }
\end{aligned}
$$

Q. 2 Look at the following equation and answer the questions;
$2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
If you start with 0.1 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ how many HCl 's will you need ? \qquad
If you start with 0.2 moles of HCl how many CaCl_{2} 's will you make?
How much HCl will you need to make 0.002 moles of $\mathrm{H}_{2} \mathrm{O}$'s ?

