CARBONYL COMPOUNDS - Aldehydes and Ketones

Structure

- carbonyl groups consists of a carbon-oxygen double bond
- the bond is **polar** due to the difference in electronegativity
- aldehydes and ketones differ in what is attached to the carbon.

ALDEHYDES - at least one H attached

KETONES - two carbons attached

Structures can be written in shortened form such as CH₃CHO for ethanal and C₂H₅COC₂H₅ or CH₃CH₂COCH₂CH₃ for pentan-3-one or in a form showing all the bonds;

Nomenclature

Aldehydes

- look for the longest chain of C atoms containing the carbonyl group
- remove E from the equivalent alkane name and add AL
- substituents are numbered based on the C with the O being number 1

Ketones

- look for the longest chain of C atoms containing the carbonyl group
- remove E from the equivalent alkane name and add ONE
- if necessary, the position of the C=O is given (lower number counting from one end)
- substituents are numbered based on the number allocated to the C in the C=O

Trivial names Before a systematic naming system was introduced, many aldehydes and ketones were named from the carboxylic acid they could be oxidised to.

	systematic name	old name	derived from
HCHO CH ₃ CHO CH ₃ COCH ₃ C ₆ H ₅ CHO	methanal ethanal propanone benzenecarbaldehyde	formaldehyde acetaldehyde acetone benzaldehyde	formic acid - HCOOH acetic acid - CH ₃ COOH acetic acid benzoic acid - C ₆ H ₅ COOH

How many carbonyl compounds have the formula $C_5H_{10}O$? Draw their structures, classify them as aldehydes or ketones and name them.

Bonding

- the carbonyl carbon is sp² hybridised and three sigma (σ) bonds are planar
- the unhybridised 2p orbital of carbon is at 90° to these
- it overlaps with a 2p orbital of oxygen to form a pi (π) bond
- as oxygen is more electronegative than carbon the bond is polar

PHYSICAL PROPERTIES

Boiling point Increases as the molecular size increases due to increased van der Waals' forces.

More branching = lower inter-molecular forces = lower boiling point

- aldehydes and ketones have slightly higher boiling points than similar mass alkanes
- due to inter-molecular dipole-dipole interactions between polar C=O bonds
- more energy is required to separate the molecules.

Soluble in organic solvents. Only the very short chain compounds are water soluble.

PREPARATION

Aldehydes

- Oxidation of primary (1°) alcohols beware of further oxidation to acids
- Reduction of carboxylic acids

Ketones

• Oxidation of secondary (2°) alcohols.

Q.2 Give the name and draw the structure of the alcohols used to make

- CH₃CHO
- $C_2H_5COCH_3$
- hexanal
- 3-methylhexan-2-one

CHEMICAL PROPERTIES OF CARBONYL COMPOUNDS

OXIDATION

- provides a way of differentiating between aldehydes and ketones
- mild oxidising agents are best
- · aldehydes are easier to oxidise
- powerful oxidising agents can oxidise ketones to a mixture of carboxylic acids

ALDEHYDES

easily oxidised to acids
$$e.g.$$
 RCHO_(I) + [O] \longrightarrow RCOOH_(I)

KETONES

only oxidised under vigorous conditions to acids with fewer carbon atoms.

e.g.
$$C_2H_5COCH_2CH_{3(1)} + 3[O] - C_2H_5COOH_{(1)} + CH_3COOH_{(1)}$$

Differentiation

• to tell an aldehyde from a ketone you need a mild oxidising agent ...

Tollen's Reagent

- ammoniacal silver nitrate contains the diammine silver(I) ion [Ag(NH₃)₂]⁺
- acts as a mild oxidising agent and will oxidise aldehydes but not ketones
- the silver(I) ion is reduced to silver

$$Ag^{+}_{(ag)} + e^{-} \longrightarrow Ag_{(s)}$$

• the test is known as THE SILVER MIRROR TEST

Fehling's Solution

- contains copper(II) ions complexed with tartrate ions giving a blue solution
- on warming, it will oxidise aliphatic (but not aromatic) aldehydes
- copper(II) is reduced and a red precipitate of copper(I) oxide, Cu₂O, is formed

The silver mirror test is the better alternative as it works with all aldehydes.

IDENTIFICATION

Theory Identifying an aldehyde or a ketone needs a two-step test ...

- 1 prove it is a carbonyl compound
- 2 test with Tollen's Reagent; aldehydes produce a silver mirror, ketones don't.

Carbonyl

• a characteristically strong peak around 1400-1600 cm⁻¹ in the **infra red spectrum**

then

Aldehyde

- Silver mirror with ammoniacal silver nitrate Tollen's Reagent
- Red precipitate with Fehling's Solution aliphatic aldehydes only

Ketones

• No reaction with Tollen's Reagent or Fehling's Solution.

REDUCTION

Method 1 Reagent sodium tetrahydridoborate(III) (sodium borohydride), NaBH₄

Conditions aqueous or alcoholic solution

Mechanism Nucleophilic Addition (also reduction as it is addition of H⁻)

Nucleophile H⁻ (hydride ion)

Product(s) Alcohols: - Aldehydes are REDUCED to primary (1°) alcohols.

Ketones are REDUCED to secondary (2°) alcohols.

Equation(s) $CH_3CHO + 2[H] \longrightarrow CH_3CH_2OH$

CH₃COCH₃ + 2[H] ----> CH₃CHOHCH₃

Note NaBH₄ doesn't reduce C=C bonds

e.g. $CH_2 = CHCHO + 2[H] \longrightarrow CH_2 = CHCH_2OH$

Q.3 Draw a diagram to indicate the bonding in NaBH₄. What shape is it?

Method 2 Reagent hydrogen

Conditions catalyst - nickel or platinum

Reaction type Hydrogenation

Product(s) Alcohols :- Aldehydes are REDUCED to primary (1°) alcohols.

Ketones are REDUCED to secondary (2°) alcohols.

Equation(s) $CH_3CHO + H_2 \longrightarrow CH_3CH_2OH$

CH₃COCH₃ + H₂ ----> CH₃CHOHCH₃

Note Hydrogen also reduces C=C bonds

e.g. $CH_2 = CHCHO + 2H_2 \longrightarrow CH_3CH_2CH_2OH$