Structure

Contain the NH₂ group.

Classification primary (1°) amines secondary (2°) amines tertiary (3°) amines

quarternary (4°) ammonium salts

2°

3°

Aliphatic

methylamine, ethylamine, dimethylamine

Aromatic NH₂ group is **attached directly** to the benzene ring (phenylamine)

1°

Nomenclature

Named after the groups surrounding the nitrogen + amine

Aliphatic amines

Aromatic amines

 $C_2H_5NH_2$ $C_6H_5NH_2$ ethylamine phenylamine (aniline)

(CH₃)₂NH dimethylamine $(CH_3)_3N$ trimethylamine

Q.1

Draw structures for all amines of molecular formula $C_4H_{11}N$. Classify them as primary, secondary or tertiary amines.

Properties The presence of the lone pair in 1°, 2° and 3° amines makes them ...

- Lewis bases they can be lone pair donors
- Brønsted-Lowry bases can be proton acceptors
- Nucleophiles provide a lone pair to attack a positive (electron deficient) centre

Physical properties

Boiling point • Boiling points increase with molecular mass.

- Amines have higher boiling points than corresponding alkanes because of intermolecular hydrogen bonding.
- Quarternary ammonium salts are ionic - they exist as crystalline salts.

$$\begin{array}{ccc}
C & C \\
:N - H^{\delta+} & :N - H^{\delta+} \\
- & H^{\delta+} & H^{\delta+}
\end{array}$$

intermolecular hydrogen bonding in amines

Solubility

- Soluble in organic solvents.
- Lower mass compounds are soluble in water due to hydrogen bonding with the solvent.
- Solubility decreases as molecules get heavier.

hydrogen bonding between amines and water

Basic properties

Bases The lone pair on nitrogen makes amines basic. RNH₂ + H⁺ -> RNH₃⁺

Strength

- depends on the availability of the lone pair and thus its ability to pick up protons
- the greater the electron density on the N, the better its ability to pick up protons
- this is affected by the groups attached to the nitrogen.
- electron withdrawing substituents (e.g. benzene rings) decrease basicity as the electron density on N is lowered.

 electron releasing substituents (e.g. CH₃ groups) increase basicity as the electron density is increased

$$CH_3$$
— NH_2

draw arrows to show the electron density movement

pK and pK_b

values

- the larger the K_b value the stronger the base
- the smaller the pK_b value the stronger the base.
- the pK_a value can also be used (pK_a + pK_b = 14)
- the smaller the pK_b, the larger the pK_a.

Compound	Formula	pK_b	Comments
ammonia	NH_3	4.76	
methylamine	CH ₃ NH ₂	3.36	methyl group is electron releasing
phenylamine	$C_6H_5NH_2$	9.38	electrons delocalised into the ring

methylamine > ammonia > phenylamine weakest base strongest base

Reactions • Amines which dissolve in water produce weak alkaline solutions

$$CH_3NH_2(g)$$
 + $H_2O(l)$ \longrightarrow $CH_3NH_3^+(aq)$ + $OH^-(aq)$

Amines react with acids to produce salts.

 $C_6H_5NH_2(I)$ + HCI(aq) -> $C_6H_5NH_3^+CI(aq)$ phenylammonium chloride

This reaction allows one to dissolve an amine in water as its salt.

Addition of aqueous sodium hydroxide liberates the free base from its salt

$$C_6H_5NH_3^+CI^-(aq)$$
 + NaOH(aq) -> $C_6H_5NH_2(l)$ + NaCI(aq) + H₂O(l)

Nucleophilic

Character

Due to their lone pair, amines react as nucleophiles with

- haloalkanes forming substituted amines nucleophilic substitution
- acyl chlorides forming N-substituted amides addition-elimination

Haloalkanes Amines can be prepared from haloalkanes (see below and previous notes).

Reagent Aqueous, alcoholic ammonia

Conditions Reflux in aqueous, alcoholic solution under pressure

Product Amine (or its salt due to a reaction with the acid produced)

Nucleophile Ammonia (NH₃)

Equation $C_2H_5Br + NH_3_{(aq/alc)} \longrightarrow C_2H_5NH_2 + HBr (or <math>C_2H_5NH_3^+Br^-)$

Problem

The amine produced is also a nucleophile and can attack another molecule of haloalkane to produce a secondary amine. This in turn can react further producing a tertiary amine and, eventually an ionic quarternary amine.

$$C_2H_5NH_2$$
 + C_2H_5Br -> HBr + $(C_2H_5)_2NH$ diethylamine, a 2° amine

$$(C_2H_5)_2NH + C_2H_5Br \longrightarrow HBr + (C_2H_5)_3N$$
 triethylamine, a 3° amine

$$(C_2H_5)_3N + C_2H_5Br \longrightarrow (C_2H_5)_4N^+Br^-$$
 tetraethylammonium bromide a quarternary (4°) salt

Uses

Quarternary ammonium salts with long chain alkyl groups

eg $[CH_3(CH_2)_{17}]_2N^+(CH_3)_2CI^-$ are used as cationic surfactants in fabric softening.

Prepared

from haloalkanes Nucleophilic substitution using ammonia ... see above

nitriles Reduction of nitriles using Li⁺AlH₄⁻ in dry ether

$$eg$$
 CH₃CH₂CN + 4[H] \longrightarrow CH₃CH₂CH₂NH₂

nitro **Reduction** by refluxing with **tin and conc. hydrochloric acid** *compounds*

$$eg \ C_6H_5NO_2 + 6[H] \longrightarrow C_6H_5NH_2 + 2H_2O$$

α - AMINO ACIDS

Structure

Amino acids contain 2 functional groups

carboxyl COOH

 amine NH_2

$$\begin{array}{c} O^{\delta-} \\ -C \begin{pmatrix} \delta \\ \delta - H \end{pmatrix}^{\delta+} \end{array}$$

Carboxyl

Amine

They all have a similar structure - the identity of R₁ and R₂ vary

Optical Isomerism

Amino acids can exist as optical isomers if they have different R₁ and R₂ groups

- optical isomers exist when a molecule contains an asymmetric carbon atom
- asymmetric carbon atoms have four different atoms or groups attached
- two isomers are formed
- one rotates plane polarised light to the left, one rotates it to the right
- no optical isomerism with glycine two H's are attached to the C atom

- Zwitterions a zwitterion is a dipolar ion
 - it has a plus and a minus charge in its structure
 - a proton from the COOH group moves to NH₂
 - amino acids exist as zwitterions at a certain pH
 - the pH value is called the isoelectric point
 - produces increased inter-molecular forces
 - melting and boiling points are higher

a zwitterion

Acid/base properties

- amino acids possess acidic and basic properties due to their functional groups
- they will form salts when treated with acids or alkalis.

Basic properties:

react with H+ HOOCCH₂NH₂ + H⁺ -> HOOCCH₂NH₃⁺ $HOOCCH_2NH_2 + HCl \longrightarrow HOOCCH_2NH_3 + Cl$ HC1

Acidic properties:

OH- $HOOCCH_2NH_2 + OH^- \longrightarrow OOCCH_2NH_2 + H_2O$ react with NaOH HOOCCH₂NH₂ + NaOH -> Na⁺OOCCH₂NH₂ + H₂O

Q.2 Describe the arrangement of bonds in the amino acid H_2NCH_2COOH

around... the N atom in the NH_2 the C atom in the COOH the C atom in the CH_2

What change, if any, takes place to the arrangement around the N if the amino acid is treated with dilute acid?

PEPTIDES

Formation

 α-amino acids can join up together to form peptides via an amide or peptide link

$$\begin{array}{c}
O^{\delta-} \\
\parallel & \text{the } \\
-C - N - \\
\end{matrix}$$

the peptide link

Structure Sequences of amino acids joined together by peptide links

2 amino acids joined dipeptide
 3 amino acids joined tripeptide
 many amino acids joined polypeptide

a dipeptide

Hydrolysis Peptides can be broken down into their constituent amino acids by hydrolysis

- attack takes place at the slightly positive C of the C=O
- the C-N bond next to the C=O is broken
- · hydrolysis with just water is not feasible
- hydrolysis in alkaline/acid conditions is quicker
- hydrolysis in acid/alkaline conditions (e.g. NaOH) will produce salts

with	HCI H+	NH ₂ NH ₂	will become	0 -
	NaOH OH⁻	COOH	will become	COO⁻ Na⁺ COO⁻

- H₂NCH₂CONHCH(CH₃)COOH is hydrolysed by water
- H₂NCH₂CONHC(CH₃)₂COOH is hydrolysed in acidic solution

F324

• H₂NCH₂CONHCH(CH₃)COOH is hydrolysed in **alkaline** solution

- Q.4 Write out possible sequences for the **original** peptide if the hydrolysis products are
 - 1 mole of amino acid A, 1 mole of amino acid B and 1 mole of amino acid C
 - 1 mole of amino acid A, 2 moles of amino acid B and 1 mole of amino acid C
 - 1 mole of amino acid A, 1 mole of B, 1 mole of C, 1 mole of D and 1 mole of E

Proteins

- polypeptides with high molecular masses
- chains can be lined up with each other
- the C=O and N-H bonds are polar due to a difference in electronegativity
- hydrogen bonding exists between chains

dotted lines -----represent hydrogen bonding